Skip to main content

Advertisement

Log in

Amsacta moorei entomopoxvirus encodes a protein kinase with dual activity and a broad substrate spectrum including two putative cellular substrates

  • Original Paper
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Amsacta moorei entomopoxvirus (AMEV) is a poxvirus that can only infect insects. This virus is an attractive research material because it is similar to smallpox virus. AMEV is one of many viruses that encode protein kinases that drive the host's cellular mechanisms, modifying immune responses to it, and regulating viral protein activity. We report here the functional characterization of a serine/threonine (Ser/Thr) protein kinase (PK) gene (ORF AMV197) of AMEV. Expression of the AMV197 gene in baculovirus expression system yielded a ~ 35.5 kDa protein. PK activity of expressed AMV197 was shown by standard PK assay. Substrate profiling of AMV197 protein by peptide microarray indicated that the expressed protein phosphorylated 81 of 624 substrates which belong to 28 families of PK substrates. While the hypothetical AMV197 protein phosphorylates Ser/Thr only, we demonstrated that the expressed PK also phosphorylates probes with tyrosine residues on the array which is a rare property among PKs. Pull-down assay of the AMV197 protein with the subcellular protein fractionations of Ld652 cells showed that it is using two cellular proteins (18 and 42 kDa) as novel putative substrates. Our results suggest that AMEV can regulate cellular mechanisms by phosphorylating cellular proteins through AMV197 PK. However, further experiments are needed to identify the exact role of this PK in the replication of AMEV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Derrien M, Punjabi A, Khanna M, Grubisha O, Traktman P (1999) Tyrosine phosphorylation of A17 during vaccinia virus infection: involvement of the H1 phosphatase and the F10 kinase. J Virol 73:7287–7296. https://doi.org/10.1128/jvi.73.9.7287-7296.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jacob T, van den Broeke C, Favoreel HW (2011) Viral serine/threonine protein kinases. J Virol 85:1158–1173. https://doi.org/10.1128/jvi.01369-10

    Article  CAS  PubMed  Google Scholar 

  3. Lin S, Chen W, Broyles SS (1992) The vaccinia virus B1R gene product is a serine/threonine protein kinase. J Virol 66:2717–2723. https://doi.org/10.1128/jvi.66.5.2717-2723.1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Michel D, Mertens T (2004) The UL97 protein kinase of human cytomegalovirus and homologues in other herpesviruses: impact on virus and host. Biochim Biophys Acta 1697:169–180. https://doi.org/10.1016/j.bbapap.2003.11.022

    Article  CAS  PubMed  Google Scholar 

  5. Mishra G, Das RH (2007) Characterization of a eukaryotic type serine/threonine kinase in Spodoptera litura nucleopolyhedrovirus-I (SpltNPV-I). Virus Res 128:126–134. https://doi.org/10.1016/j.virusres.2007.04.021

    Article  CAS  PubMed  Google Scholar 

  6. Moss B (2007) Poxviridae: the viruses and their replication. In: Fields BN, Knipe DM, Howley PM (eds) Fields virology. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia, pp 2905–2946

    Google Scholar 

  7. Bray M, Roy CJ (2004) Antiviral prophylaxis of smallpox. J Antimicrob Chemother 54:1–5. https://doi.org/10.1093/jac/dkh286

    Article  CAS  PubMed  Google Scholar 

  8. Harrison SC, Alberts B, Ehrenfeld E, Enquist L, Fineberg H et al (2004) Discovery of antivirals against smallpox. Proc Natl Acad Sci USA 101:11178–11192. https://doi.org/10.1073/pnas.0403600101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McInnes CJ, Damon IK, Smith GL, McFadden G, Isaacs SN, Roper RL, Evans DH, Damaso CR, Carulei O, Wise LM, Lefkowitz E (2023) ICTV virus taxonomy profile: Poxviridae 2023 Journal of General Virology (in press). https://ictv.global/report/chapter/poxviridae

  10. Arif BM, Kurstak E (1991) The entomopoxviruses. In: Kurstak E (ed) Viruses of invertebrates. Marcel Dekker Inc, New York, pp 179–198

    Google Scholar 

  11. Bawden AL, Glassberg KJ, Diggans J, Shaw R, Farmerie W et al (2000) Complete genomic sequence of the Amsacta moorei entomopoxvirus: analysis and comparison with other poxviruses. Virology 274:120–139. https://doi.org/10.1006/viro.2000.0449

    Article  CAS  PubMed  Google Scholar 

  12. Guo FB, Yu XJ (2007) Re-prediction of protein-coding genes in the genome of Amsacta moorei entomopoxvirus. J Virol Methods 146:389–392. https://doi.org/10.1016/j.jviromet.2007.07.010

    Article  CAS  PubMed  Google Scholar 

  13. Muratoğlu H, Nalçacıoğlu R, Demirbağ Z (2010) Transcriptional and structural analyses of Amsacta moorei entomopoxvirus protein kinase gene (AMV197, pk). Ann Microbiol 60:523–530. https://doi.org/10.1007/s13213-010-0082-8

    Article  CAS  Google Scholar 

  14. Reed LJ, Muench H (1938) A simple method of estimating fifty percent endpoints. Am J Hyg 27:493–497. https://doi.org/10.1093/oxfordjournals.aje.a118408

    Article  Google Scholar 

  15. Danelishvili L, Babrak L, Rose SJ, Everman J, Bermudez LE (2014) Mycobacterium tuberculosis alters the metalloprotease activity of the COP9 signalosome. mBio 5(4):1–9. https://doi.org/10.1128/mbio.01278-14

    Article  Google Scholar 

  16. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. https://doi.org/10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  17. Vikis HG, Guan KL (2004) Glutathione-S-transferase-fusion based assays for studying protein-protein interactions. Methods Mol Biol 261:175–186

    CAS  PubMed  Google Scholar 

  18. Einarson MB, Pugacheva EN, Orlinick JR (2005) Identification of protein-protein interactions with glutathione S-transferase (GST) fusion proteins. In: Golemis A (ed) Protein-protein interactions, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 37–57

    Google Scholar 

  19. Einarson MB (2001) Detection of protein-protein interactions using the GST fusion protein pulldown technique. In: Sambrook JF, Russell DW (eds) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor, New York, pp 1855–1859

    Google Scholar 

  20. Neuhoff V, Stamm R, Eibl H (1985) Clear background and highly sensitive protein stain with coomassie blue dyes in polyacrylamide gels: a systematic analysis. Electrophoresis 6:427–448. https://doi.org/10.1002/elps.1150060905

    Article  CAS  Google Scholar 

  21. Ptacek J, Devgan G, Michaud G, Zhu H, Zhu X et al (2005) Global analysis of protein phosphorylation in yeast. Nature 438:679–684. https://doi.org/10.1038/nature04187

    Article  CAS  PubMed  Google Scholar 

  22. Zhu H, Klemic JF, Chang S, Bertone P, Casamayor A et al (2000) Analysis of yeast protein kinases using protein chips. Nat Genet 26:283–289. https://doi.org/10.1038/81576

    Article  CAS  PubMed  Google Scholar 

  23. Santos CR, Vega FM, Blanco S, Barcia R, Lazo PA (2004) The vaccinia virus B1R kinase induces p53 downregulation by an Mdm2-dependent mechanism. Virology 328:254–265. https://doi.org/10.1016/j.virol.2004.08.013

    Article  CAS  PubMed  Google Scholar 

  24. Nemeroff ME, Barabino SM, Li Y, Keller W, Krug RM (1998) Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3’ end formation of cellular pre-mRNAs. Mol Cell 1:991–1000. https://doi.org/10.1016/S1097-2765(00)80099-4

    Article  CAS  PubMed  Google Scholar 

  25. Chen Z, Li Y, Krug RM (1999) Influenza A virus NS1 protein targets poly(A)-binding protein II of the cellular 3’-end processing machinery. EMBO J 18:2273–2283. https://doi.org/10.1093/emboj/18.8.2273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Siomi H, Matunis MJ, Michael WM, Dreyfuss G (1993) The pre-mRNA binding K protein contains a novel evolutionarily conserved motif. Nucl Acids Res 21:1193–1198. https://doi.org/10.1093/nar/21.5.1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. García-Mayoral MF, Hollingworth D, Masino L, Díaz-Moreno I, Kelly G et al (2007) The structure of the C-terminal KH domains of KSRP reveals a noncanonical motif important for mRNA degradation. Structure 15(4):485–498. https://doi.org/10.1016/j.str.2007.03.006

    Article  CAS  PubMed  Google Scholar 

  28. Di Fruscio M, Chen T, Bonyadi S, Lasko P, Richard S (1998) The identification of two Drosophila K homology domain proteins KEP1 and SAM are members of the Sam68 family of GSG domain proteins. J Biol Chem 273(46):30122–30130. https://doi.org/10.1074/jbc.273.46.30122

    Article  PubMed  Google Scholar 

  29. Perera S, Krell P, Demirbağ Z, Nalçacıoğlu R, Arif B (2013) Induction of apoptosis by the Amsacta moorei entomopoxvirus. J Gen Virol 94:1876–1887. https://doi.org/10.1099/vir.0.051888-0

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study has been funded by The Scientific and Technological Research Council of Türkiye (Project No: 110T887).

Author information

Authors and Affiliations

Authors

Contributions

Resources: ZD Conceived and designed the experiments: HM Performed the experiments: HM Analysed the data: HM, RN, BA Wrote the paper: HM, ZD, BA Review and editing: HM, ZD

Corresponding author

Correspondence to Zihni Demirbag.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Edited by Sassan Asgari .

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 36 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muratoğlu, H., Nalcacioglu, R., Arif, B.M. et al. Amsacta moorei entomopoxvirus encodes a protein kinase with dual activity and a broad substrate spectrum including two putative cellular substrates. Virus Genes 60, 287–294 (2024). https://doi.org/10.1007/s11262-024-02069-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-024-02069-4

Keywords

Navigation