Skip to main content
Log in

Duck sewage source coliphage P762 can lyse STEC and APEC

  • Original Paper
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Multiple pathogenic types or serotypes restrict treatment for colibacillosis. In addition, rising antibiotic resistance has heightened public awareness to prevent and control pathogenic Escherichia coli. The bacteriophage is a viable technique to treat colibacillosis as an alternative to antibiotics. P762, a coliphage isolated from duck farm sewage, was demonstrated to cloud lyse Shiga toxin-producing Escherichia Coli serotypes O157 and non-O157 (17/39), Avian pathogenic E. coli covered serotype O78, O83, and O9 (5/19), and other pathogenic Escherichia coli (5/17). Additional fundamental biological characteristics analysis revealed that P762 is stable at pH 3 ~ 11 and temperature between 4 °C and 60 °C, and its optimum multiplicity of infection (MOI) is 0.1. The one-step curve of P762 exhibited three bursts of growth stage: two rapid and one slow stage. Furthermore, the first rapid burst size is 80 CFU/PFU, the burst size of the slow stage is 10 CFU/PFU, and the second rapid burst size is about 990 CFU/PFU. In addition, P762 can form a "halo" on a double agar plate, implying that the phage secretes depolymerase. With 95.14% identity and 90% query coverage, genome sequence analysis revealed that P762 is most closely related to Escherichia phage DY1, which belongs to the genus Kayfunavirus. After screening using RAST and VFDB, no virulence factors were discovered in P762. In vitro antibacterial tests revealed that P762 has high bactericidal activity in lettuce leaves contaminated with STEC. In conclusion, phage P762 might be employed in the future to prevent and control pathogenic Escherichia coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig.8
Fig. 9

Similar content being viewed by others

Data availability

The annotated whole-genome sequence of phage P762 were deposited in the GenBank database under accession number: MW876471.

References

  1. Ron EZ (2006) Host specificity of septicemic Escherichia coli: human and avian pathogens Eliora Z Ron. Curr Opin Microbiol 9:28–32. https://doi.org/10.1016/j.mib.2005.12.001

    Article  CAS  PubMed  Google Scholar 

  2. Croxen MA, Finlay BB (2010) Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol 8(1):26–38. https://doi.org/10.1038/nrmicro2265

    Article  CAS  PubMed  Google Scholar 

  3. Wells JG, Davis BR, Wachsmuth IK et al (1983) Laboratory investigation of hemorrhagic colitis outbreaks associated with a rare Escherichia coli serotype. J Clin Microbiol 18(3):512–520. https://doi.org/10.1128/JCM.18.3.512-520.1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brooks JT, Sowers EG, Wells JG et al (2005) Non-O157 Shiga toxin-producing Escherichia coli infections in the United States, 1983–2002. J Infect Dis 192(8):1422–1429. https://doi.org/10.1086/466536

    Article  PubMed  Google Scholar 

  5. Moxley RA (2004) Escherichia coli O157:H7: an update on intestinal colonization and virulence mechanisms. Anim Health Res Rev 5(1):15–33. https://doi.org/10.1079/AHRR200463

    Article  CAS  PubMed  Google Scholar 

  6. Caprioli A, Morabito S, Brug Re H et al (2005) Enterohaemorrhagic Escherichia coli: emerging issues on virulence and modes of transmission. Vet Res 36(3):289–311. https://doi.org/10.1051/vetres:2005002

    Article  CAS  PubMed  Google Scholar 

  7. Atnafie B, Paulos D, Abera M et al (2017) Occurrence of Escherichia coli O157:H7 in cattle feces and contamination of carcass and various contact surfaces in abattoir and butcher shops of Hawassa Ethiopia. BMC Microbiol 17(1):24. https://doi.org/10.1186/s12866-017-0938-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cox GJM, Griffith B, Reed M et al (2020) A vaccine to prevent egg layer peritonitis in chickens. Avian Dis 65(1):198–204. https://doi.org/10.1637/aviandiseases-D-20-00093

    Article  Google Scholar 

  9. Lima Barbieri N, Nielsen DW, Wannemuehler Y et al (2017) mcr-1 identified in avian pathogenic Escherichia coli (APEC). PLoS ONE 12(3):e172997. https://doi.org/10.1371/journal.pone.0172997

    Article  CAS  Google Scholar 

  10. Solà-Ginés M, Cameron-Veas K, Badiola I et al (2015) Diversity of multi-drug resistant Avian Pathogenic Escherichia coli (APEC) causing outbreaks of colibacillosis in broilers during 2012 in Spain. PLoS ONE 10(11):e143191. https://doi.org/10.1371/journal.pone.0143191

    Article  CAS  Google Scholar 

  11. Smith KE, Wilker PR, Reiter PL et al (2012) Antibiotic treatment of Escherichia coli O157 infection and the risk of hemolytic uremic syndrome. Minnesota Pediatr Infect Dis J 31(1):37–41. https://doi.org/10.1097/INF.0b013e31823096a8

    Article  PubMed  Google Scholar 

  12. Ramstad SN, Taxt AM, Naseer U et al (2021) Effects of antimicrobials on Shiga toxin production in high-virulent Shiga toxin-producing Escherichia coli. Microb Pathogenesis 152:104636. https://doi.org/10.1016/j.micpath.2020.104636

    Article  CAS  Google Scholar 

  13. D’Herelle F (2007) On an invisible microbe antagonistic toward dysenteric bacilli: brief note by Mr. F. D ’ Herelle, presented by Mr. Roux. Res Microbiol 158(7):553–554. https://doi.org/10.1016/j.resmic.2007.07.005

    Article  PubMed  Google Scholar 

  14. Salmond GPC, Fineran PC (2015) A century of the phage: past, present and future. Nat Rev Microbiol 13(12):777–786. https://doi.org/10.1038/nrmicro3564

    Article  CAS  PubMed  Google Scholar 

  15. Clokie MR, Millard AD, Letarov AV et al (2011) Phages in nature. Bacteriophage 1(1):31–45. https://doi.org/10.4161/bact.1.1.14942

    Article  PubMed  PubMed Central  Google Scholar 

  16. Coffey B, Rivas L, Duffy G et al (2011) Assessment of Escherichia coli O157:H7-specific bacteriophages e11/2 and e4/1c in model broth and hide environments. Int J Food Microbiol 147(3):188–194. https://doi.org/10.1016/j.ijfoodmicro.2011.04.001

    Article  PubMed  Google Scholar 

  17. Xu J, Chen M, He L et al (2016) Isolation and characterization of a T4-like phage with a relatively wide host range within Escherichia coli. J Basic Microbiol 56(4):405–421. https://doi.org/10.1002/jobm.201500440

    Article  CAS  PubMed  Google Scholar 

  18. Oliveira A, Sereno R, Azeredo J (2010) In vivo efficiency evaluation of a phage cocktail in controlling severe colibacillosis in confined conditions and experimental poultry houses. Vet Microbiol 146(3–4):303–308. https://doi.org/10.1016/j.vetmic.2010.05.015

    Article  PubMed  Google Scholar 

  19. Badawy S, Baka ZAM, Abou-Dobara MI et al (2022) Biological and molecular characterization of fEg-Eco19, a lytic bacteriophage active against an antibiotic-resistant clinical Escherichia coli isolate. Arch Virol. https://doi.org/10.1007/s00705-022-05426-6

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li M, Guo M, Chen L et al (2020) Isolation and characterization of novel lytic bacteriophages infecting epidemic carbapenem-resistant Klebsiella pneumoniae strains. Front Microbiol. https://doi.org/10.3389/fmicb.2020.01554

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chen M, Zhang L, Abdelgader SA et al (2017) Alterations in gp37 expand the host range of a T4-like phage. Appl Environ Microbiol. https://doi.org/10.1128/AEM.01576-17

    Article  PubMed  PubMed Central  Google Scholar 

  22. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685. https://doi.org/10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  23. Pajunen M, Kiljunen S, Skurnik M (2000) Bacteriophage φYeO3-12, specific for Yersinia enterocolitica serotype O:3, is related to Coliphages T3 and T7. J Bacteriol 182(18):5114–5120. https://doi.org/10.1128/JB.182.18.5114-5120.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ji Y, Cheng M, Zhai S et al (2019) Preventive effect of the phage VB-SavM-JYL01 on rabbit necrotizing pneumonia caused by Staphylococcus aureus. Vet Microbiol 229:72–80. https://doi.org/10.1016/j.vetmic.2018.12.021

    Article  CAS  PubMed  Google Scholar 

  25. Bankevich A, Nurk S, Antipov D et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Aziz RK, Bartels D, Best AA et al (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75. https://doi.org/10.1186/1471-2164-9-75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Grant JR, Stothard P (2008) The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res. https://doi.org/10.1093/nar/gkn179

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liu B, Zheng D, Jin Q et al (2019) VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res 47(D1):D687–D692. https://doi.org/10.1093/nar/gky1080

    Article  CAS  PubMed  Google Scholar 

  29. Kelley LA, Mezulis S, Yates CM et al (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858. https://doi.org/10.1038/nprot.2015.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ren J, Wen L, Gao X et al (2009) DOG 1.0: illustrator of protein domain structures. Cell Res 19(2):271–273. https://doi.org/10.1038/cr.2009.6

    Article  CAS  PubMed  Google Scholar 

  31. Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30(14):2068–2069. https://doi.org/10.1093/bioinformatics/btu153

    Article  CAS  PubMed  Google Scholar 

  32. Page AJ, Cummins CA, Hunt M et al (2015) Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31(22):3691–3693. https://doi.org/10.1093/bioinformatics/btv421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu S, Campisi E, Li J et al (2021) Decontamination of Escherichia coli O157:H7 on fresh Romaine lettuce using a novel bacteriophage lysin. Int J Food Microbiol 341:109068. https://doi.org/10.1016/j.ijfoodmicro.2021.109068

    Article  CAS  PubMed  Google Scholar 

  34. Huang C, Shi J, Ma W et al (2018) Isolation, characterization, and application of a novel specific Salmonella bacteriophage in different food matrices. Food Res Int 111:631–641. https://doi.org/10.1016/j.foodres.2018.05.071

    Article  CAS  PubMed  Google Scholar 

  35. Vengarai Jagannathan B, Kitchens S, Priyesh Vijayakumar P et al (2021) Efficacy of bacteriophage cocktail to control E. coli O157:H7 contamination on baby spinach leaves in the presence or absence of organic load. Microorganisms 9(3):544. https://doi.org/10.3390/microorganisms9030544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Niu YD, Stanford K, Kropinski AM, Ackermann HW, Johnson RP, She YM, Ahmed R, Villegas A, McAllister TA (2012) Genomic, Proteomic and Physiological Characterization of a T5-like Bacteriophage for Control of Shiga Toxin- Producing Escherichia coli O157:H7. PLoS ONE 4(7):e34585

    Article  Google Scholar 

  37. Pereira C, Silva YJ, Santos AL et al (2011) Bacteriophages with potential for inactivation of fish pathogenic bacteria: survival, host specificity and effect on bacterial community structure. Mar Drugs 9(11):2236–2255. https://doi.org/10.3390/md9112236

    Article  PubMed  PubMed Central  Google Scholar 

  38. Salem M, Skurnik M (2018) Genomic characterization of sixteen yersinia enterocolitica-infecting podoviruses of pig origin. Viruses 10(4):174. https://doi.org/10.3390/v10040174

    Article  CAS  PubMed Central  Google Scholar 

  39. Leungtongkam U, Thummeepak R, Kitti T et al (2020) Genomic analysis reveals high virulence and antibiotic resistance amongst phage susceptible Acinetobacter baumannii. Sci Rep. https://doi.org/10.1038/s41598-020-73123-y

    Article  PubMed  PubMed Central  Google Scholar 

  40. Jayaprakash AD, Jabado O, Brown BD et al (2011) Identification and remediation of biases in the activity of RNA ligases in small-RNA deep sequencing. Nucleic Acids Res 39(21):e141. https://doi.org/10.1093/nar/gkr693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hamdi S, Rousseau GM, Labrie SJ et al (2017) Characterization of two polyvalent phages infecting Enterobacteriaceae. Sci Rep. https://doi.org/10.1038/srep40349

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hong Nhung P, Ohkusu K, Mishima N et al (2007) Phylogeny and species identification of the family Enterobacteriaceae based on dnaJ sequences. Diagn Micr Infec Dis 58(2):153–161. https://doi.org/10.1016/j.diagmicrobio.2006.12.019

    Article  CAS  Google Scholar 

  43. Delmas J, Breysse F, Devulder G et al (2006) Rapid identification of Enterobacteriaceae by sequencing DNA gyrase subunit B encoding gene. Diagn Micr Infec Dis 55(4):263–268. https://doi.org/10.1016/j.diagmicrobio.2006.02.003

    Article  CAS  Google Scholar 

  44. Filippov AA, Sergueev KV, He Y, Huang XZ, Gnade BT, Mueller AJ, Fernandez-Prada CM, Nikolich MP (2012) Bacteriophage-resistant mutants in Yersiniapestis: identification of phage receptors and attenuation for mice. Adv Exp Med Biol 337(954):48. https://doi.org/10.1371/journal.pone.0025486

    Article  CAS  Google Scholar 

  45. Hammad AMM (1998) Evaluation of alginate-encapsulated Azotobacter chroococcum as a phage-resistant and an effective inoculum. J Basic Microb 38(1):9–16. https://doi.org/10.1002/(SICI)1521-4028(199803)38:1%3c9::AID-JOBM9%3e3.0.CO;2-4

    Article  CAS  Google Scholar 

  46. Mi L, Liu Y, Wang C et al (2019) Identification of a lytic Pseudomonas aeruginosa phage depolymerase and its anti-biofilm effect and bactericidal contribution to serum. Virus Genes 55(3):394–405. https://doi.org/10.1007/s11262-019-01660-4

    Article  CAS  PubMed  Google Scholar 

  47. Li M, Li P, Chen L et al (2021) Identification of a phage-derived depolymerase specific for KL64 capsule of Klebsiella pneumoniae and its anti-biofilm effect. Virus Genes. https://doi.org/10.1007/s11262-021-01847-8

    Article  PubMed  PubMed Central  Google Scholar 

  48. Seul A, Müller JJ, Andres D et al (2014) Bacteriophage P22 tailspike: structure of the complete protein and function of the interdomain linker. Acta Crystallogr D Biol Crystallogr 70(5):1336–1345. https://doi.org/10.1107/S1399004714002685

    Article  CAS  PubMed  Google Scholar 

  49. Barbirz S, Müller JJ, Uetrecht C et al (2008) Crystal structure ofEscherichia coliphage HK620 tailspike: podoviral tailspike endoglycosidase modules are evolutionarily related. Mol Microbiol 69(2):303–316. https://doi.org/10.1111/j.1365-2958.2008.06311.x

    Article  CAS  PubMed  Google Scholar 

  50. Pertics BZ, Cox A, Nyúl A et al (2021) Isolation and characterization of a novel lytic bacteriophage against the K2 capsule-expressing hypervirulent klebsiella pneumoniae strain 52145, and Identification of its functional depolymerase. Microorganisms 9(3):650. https://doi.org/10.3390/microorganisms9030650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Plattner M, Shneider MM, Arbatsky NP et al (2019) Structure and function of the branched receptor-binding complex of bacteriophage CBA120. J Mol Biol 431(19):3718–3739. https://doi.org/10.1016/j.jmb.2019.07.022

    Article  CAS  PubMed  Google Scholar 

  52. Benjamin MMUS, Datta AR (1995) Acid tolerance of enterohemorrhagic Escherichia coli. Appl Environ Microb 61(4):1669–1672. https://doi.org/10.1128/AEM.61.4.1669-1672.1995

    Article  CAS  Google Scholar 

  53. Brackett RE, Hao YY, Doyle MP (1994) Ineffectiveness of hot acid sprays to decontaminate Escherichia coli 0157:H7 on Beef. J Food Protect 57(3):198–203. https://doi.org/10.4315/0362-028X-57.3.198

    Article  CAS  Google Scholar 

  54. Thomas DE, Elliott EJ (2013) Interventions for preventing diarrhea-associated hemolytic uremic syndrome: systematic review. BMC Public Health 13:799. https://doi.org/10.1186/1471-2458-13-799

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by by the following funds: Xinjiang Joint Project of National Natural Science Foundation of China: Targeted screening of virulent phage and its prevention and control in E.coli.( U1803109). Modern agriculture (waterfowl) industrial technology system innovation team for disease prevention and control of Jiangsu (BE2017654). The project of supporting outstanding young talents in universities of anhui province (gxyq2019201). Wuhu Institute of Technology level science and technology team (wzykjtd202002). Animal epidemic prevention and quarantine teaching team of Anhui quality engineering project (2020jxtd282).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haiyan Zhang or Wei Zhang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Research involving human and animals participants

This article did not contain any study with human participants or animals.

Additional information

Edited by Andrew Millard.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, X., Wang, H., Guo, G. et al. Duck sewage source coliphage P762 can lyse STEC and APEC. Virus Genes 58, 436–447 (2022). https://doi.org/10.1007/s11262-022-01915-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-022-01915-7

Keywords

Navigation