Skip to main content

Advertisement

Log in

Molecular characterization of picobirnaviruses in small ruminants with diarrhea in Turkey

  • Short Report
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Picobirnaviruses (PBVs), detected in a wide range of host species, are viruses of which limited information is available about their pathogenic potential, ecology, or evolutionary characteristics. In this study, a molecular analysis of segment 2 encoding the PBV RNA-dependent RNA-polymerase (RdRp) in small ruminants with diarrhea in Turkey was undertaken. A total of 66 fecal samples or gut contents from diarrheic small ruminants including 55 sheep and 11 goats were screened. Four samples (6.06%), obtained from sheep in different farms, yielded the expected amplicon size for the genogroup I RdRp gene fragment, whereas no positivity was detected for genogroup II PBVs. Phylogenetic analysis revealed high levels of genetic diversity among the genogroup I PBVs. Additionally, all PBV infected sheep were also positive for rotavirus A. This study, reporting the presence of the PBVs in sheep Turkey for the first time, contributes to the molecular characterization and epidemiology of PBVs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

References

  1. Delmas B, Attoui H, Ghosh S, Malik YS, Mundt E, Vakharia VN (2019) Ictv virus taxonomy profile: picobirnaviridae. J Gen Virol 100:133–134. https://doi.org/10.1099/jgv.0.001186

    Article  CAS  PubMed  Google Scholar 

  2. Wakuda M, Pongsuwanna Y, Taniguchi K (2005) Complete nucleotide sequences of two RNA segments of human picobirnavirus. J Virol Methods 126:165–169. https://doi.org/10.1016/j.jviromet.2005.02.010

    Article  CAS  PubMed  Google Scholar 

  3. Shi M, Lin X-D, Tian J-H, Chen L-J, Chen X, Li C-X, Qin X-C, Li J, Cao J-P, Eden J-S, Buchmann J, Wang W, Xu J, Holmes EC, Zhang Y-Z (2016) Redefining the invertebrate RNA virosphere. Nature 540:539–543. https://doi.org/10.1038/nature20167

    Article  CAS  PubMed  Google Scholar 

  4. Pereira HG, Fialho AM, Flewett TH, Teixeira JMS, Andrade ZP (1988) Novel viruses in human faeces. Lancet 332:103–104. https://doi.org/10.1016/S0140-6736(88)90032-3

    Article  Google Scholar 

  5. Pereira HG, de Araújo HP, Fialho AM, de Castro L, Monteiro SP (1989) A virus with bi-segmented double-stranded RNA gerome in guinea pig intestines. Mem Inst Oswaldo Cruz 84:137–140. https://doi.org/10.1590/S0074-02761989000100025

    Article  CAS  PubMed  Google Scholar 

  6. Ganesh B, Masachessi G, Mladenova Z (2014) Animal picobirnavirus. VirusDisease 25:223–238. https://doi.org/10.1007/s13337-014-0207-y

    Article  PubMed  PubMed Central  Google Scholar 

  7. Woo PCY, Teng JLL, Bai R, Wong AYP, Martelli P, Hui SW, Tsang AKL, Lau CCY, Ahmed SS, Yip CCY, Choi GKY, Li KSM, Lam CSF, Lau SKP, Yuen KY (2016) High diversity of genogroup I picobirnaviruses in mammals. Front Microbiol 7:1–12. https://doi.org/10.3389/fmicb.2016.01886

    Article  Google Scholar 

  8. Chagas EH, da Silva JR, de Barros BD, Júnior JW, dos Santos FD, Júnior EC, Bezerra DA, Pinheiro HH, de Castro CM, Malik YS, Mascarenhas JD (2021) Picobirnavirus detection in animals from Amazon Biome. Res Seq. https://doi.org/10.21203/rs.3.rs-229416/v1

    Article  Google Scholar 

  9. Kashnikov AY, Epifanova NV, Novikova NA (2020) Picobirnaviruses: prevalence, genetic diversity, detection methods. Vavilovskii Zhurnal Genet Selektsii 24:661–672. https://doi.org/10.18699/VJ20.660

    Article  PubMed  PubMed Central  Google Scholar 

  10. Navarro JD, Candido M, de Almeida-Queiroz SR, Buzinaro MD, Livonesi MC, Fernandes AM, de Sousa RL (2018) Genetic diversity of bovine Picobirnavirus, Brazil. Virus Genes 54:724–728. https://doi.org/10.1007/s11262-018-1586-8

    Article  CAS  PubMed  Google Scholar 

  11. Ghosh S, Malik YS (2021) The true host/s of picobirnaviruses. Front Vet Sci 7:6–8. https://doi.org/10.3389/fvets.2020.615293

    Article  Google Scholar 

  12. Bhattacharya R, Sahoo GC, Nayak MK, Rajendran K, Dutta P, Mitra U, Bhattacharya MK, Naik TN, Bhattacharya SK, Krishnan T (2007) Detection of Genogroup I and II human picobirnaviruses showing small genomic RNA profile causing acute watery diarrhoea among children in Kolkata, India. Infect Genet Evol 7:229–238. https://doi.org/10.1016/j.meegid.2006.09.005

    Article  CAS  PubMed  Google Scholar 

  13. Woo PCY, Teng JLL, Bai R, Tang Y, Wong AYP, Li KSM, Lam CSF, Fan RYY, Lau SKP, Yuen K (2019) Novel picobirnaviruses in respiratory and alimentary tracts of cattle and monkeys with large intra- and inter-host diversity. Viruses 11:574. https://doi.org/10.3390/v11060574

    Article  CAS  PubMed Central  Google Scholar 

  14. Huaman JL, Pacioni C, Sarker S, Doyle M, Forsyth DM, Pople A, Hampton JO, Carvalho TG, Helbig KJ (2021) Molecular epidemiology and characterization of picobirnavirus in wild deer and cattle from Australia: evidence of genogroup I and II in the upper respiratory tract. Viruses 13:1492. https://doi.org/10.3390/v13081492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Berg MG, Forberg K, Perez LJ, Luk K, Meyer TV, Cloherty GA (2021) Emergence of a distinct picobirnavirus genotype circulating in patients hospitalized with acute respiratory illness. Viruses 13:2534. https://doi.org/10.3390/v13122534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Grohmann GS, Glass RI, Pereira HG, Monroe SS, Hightower AW, Weber R, Bryan RT (1993) Enteric viruses and diarrhea in HIV-infected patients. N Engl J Med 329:14–20. https://doi.org/10.1056/NEJM199307013290103

    Article  CAS  PubMed  Google Scholar 

  17. Giordano MO, Martinez LC, Rinaldi D, Gúinard S, Naretto E, Casero R, Yacci MR, Depetris AR, Medeot SI, Nates SV (1998) Detection of picobirnavirus in HIV-infected patients with diarrhea in argentina. J Acquir Immune Defic Syndr Hum Retrovirol 18:380–383. https://doi.org/10.1097/00042560-199808010-00010

    Article  CAS  PubMed  Google Scholar 

  18. Joycelyn SJ, Ng A, Kleymann A, Malik YS, Kobayashi N, Ghosh S (2020) High detection rates and genetic diversity of picobirnaviruses (PBVs) in pigs on St. Kitts Island: identification of a porcine PBV strain closely related to simian and human PBVs. Infect Genet Evol 84:104383. https://doi.org/10.1016/j.meegid.2020.104383

    Article  CAS  PubMed  Google Scholar 

  19. Malik YS, Sircar S, Dhama K, Singh R, Ghosh S, Bányai K, Vlasova AN, Nadia T, Singh RK (2018) Molecular epidemiology and characterization of picobirnaviruses in small ruminant populations in India. Infect Genet Evol 63:39–42. https://doi.org/10.1016/j.meegid.2018.05.011

    Article  PubMed  Google Scholar 

  20. Kunz AF, Possatti F, de Freitas JA, Alfieri AA, Takiuchi E (2018) High detection rate and genetic diversity of picobirnavirus in a sheep flock in Brazil. Virus Res 255:10–13. https://doi.org/10.1016/j.virusres.2018.06.016

    Article  CAS  PubMed  Google Scholar 

  21. Muñoz M, Álvarez M, Lanza I, Cármenes P (1996) Role of enteric pathogens in the aetiology of neonatal diarrhoea in lambs and goat kids in Spain. Epidemiol Infect 117:203–211. https://doi.org/10.1017/S0950268800001321

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rosen BI, Fang ZY, Glass RI, Monroe SS (2000) Cloning of human picobirnavirus genomic segments and development of an RT-PCR detection assay. Virology 277:316–329. https://doi.org/10.1006/viro.2000.0594

    Article  CAS  PubMed  Google Scholar 

  23. Iturriza Gómara M, Wong C, Blome S, Desselberger U, Gray J (2002) Molecular characterization of VP6 genes of human rotavirus isolates: correlation of genogroups with subgroups and evidence of independent segregation. J Virol 76:6596–6601. https://doi.org/10.1128/JVI.76.13.6596-6601.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Larsson A (2014) AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30:3276–3278. https://doi.org/10.1093/bioinformatics/btu531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ganesh B, Nataraju S, Pativada M, Kumar R, Banyai K, Masachessi G, Mladenova Z, Nagashima S, Ghosh S, Kobayashi N (2011) Genogroup I picobirnavirus in diarrhoeic foals: can the horse serve as a natural reservoir for human infection? Vet Res 42:52. https://doi.org/10.1186/1297-9716-42-52

    Article  PubMed  PubMed Central  Google Scholar 

  28. Malik YS, Chandrashekar KM, Sharma K, Haq AA, Vaid N, Chakravarti S, Batra M, Singh R, Pandey AB (2011) Picobirnavirus detection in bovine and buffalo calves from foothills of Himalaya and Central India. Trop Anim Health Prod 43:1475–1478. https://doi.org/10.1007/s11250-011-9834-0

    Article  PubMed  PubMed Central  Google Scholar 

  29. Costa AP, Cubel Garcia RCN, Labarthe NV, Leite JPG (2004) Detection of double-stranded RNA viruses in fecal samples of dogs with gastroenteritis in Rio de Janeiro, Brazil. Arq Bras Med Vet e Zootec 56:554–557. https://doi.org/10.1590/S0102-09352004000400020

    Article  Google Scholar 

  30. Fregolente MCD, de Castro-Dias E, Martins SS, Spilki FR, Allegretti SM, Gatti MSV (2009) Molecular characterization of picobirnaviruses from new hosts. Virus Res 143:134–136. https://doi.org/10.1016/j.virusres.2009.03.006

    Article  CAS  PubMed  Google Scholar 

  31. Oikarinen S, Tauriainen S, Viskari H, Simell O, Knip M, Virtanen S, Hyöty H (2009) PCR inhibition in stool samples in relation to age of infants. J Clin Virol 44:211–214. https://doi.org/10.1016/j.jcv.2008.12.017

    Article  CAS  PubMed  Google Scholar 

  32. Buzinaro MG, Freitas PPS, Kisiellius JJ, Ueda M, Jerez JA (2003) Identification of a bisegmented double-stranded RNA virus (picobirnavirus) in calf faeces. Vet J 166:185–187. https://doi.org/10.1016/S1090-0233(03)00031-5

    Article  CAS  PubMed  Google Scholar 

  33. Bányai K, Jakab F, Reuter G, Bene J, Új M, Melegh B, Szucs G (2003) Sequence heterogeneity among human picobirnaviruses detected in a gastroenteritis outbreak. Arch Virol 148:2281–2291. https://doi.org/10.1007/s00705-003-0200-z

    Article  CAS  PubMed  Google Scholar 

  34. Alkan F, Gulyaz V, Timurkan MO, Iyisan S, Ozdemir S, Turan N, Buonavoglia C, Martella V (2012) A large outbreak of enteritis in goat flocks in Marmara, Turkey, by G8P[1] group A rotaviruses. Arch Virol 157:1183–1187. https://doi.org/10.1007/s00705-012-1263-5

    Article  CAS  PubMed  Google Scholar 

  35. Timurkan MÖ, Alkan F (2020) Identification of rotavirus A strains in small ruminants: first detection of G8P[1] genotypes in sheep in Turkey. Arch Virol 165:425–431. https://doi.org/10.1007/s00705-019-04476-7

    Article  CAS  PubMed  Google Scholar 

  36. Chen M, Sun H, Lan D, Hua X, Cui L, Yuan C, Yang Z (2014) Molecular detection of genogroup I and II picobirnaviruses in pigs in China. Virus Genes 48:553–556. https://doi.org/10.1007/s11262-014-1058-8

    Article  CAS  PubMed  Google Scholar 

  37. Malik YS, Kumar N, Sharma K, Dhama K, Shabbir MZ, Ganesh B, Kobayashi N, Banyai K (2014) Epidemiology, phylogeny, and evolution of emerging enteric picobirnaviruses of animal origin and their relationship to human strains. Biomed Res Int 2014:1–13. https://doi.org/10.1155/2014/780752

    Article  CAS  Google Scholar 

Download references

Funding

The authors received no specific funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

IKH together with BG conducted the experiments and performed the molecular biology and bioinformatic analyses (alignments, phylogeny). IKH drafted the manuscript. FA was responsible for the supervision of the study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ilke Karayel-Hacioglu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Not applicable.

Research involving human participants and/or animals

Symptomatic small ruminants were examined for clinical evaluation, and samples were collected by the field veterinarians. No ethical approval was required for this study.

Additional information

Edited by William Dundon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11262_2022_1894_MOESM1_ESM.jpg

Supplementary file1 (PDF 1519 kb). Fig. S1 The map showing the distribution of the samples according to sampled provinces. Blue and grey colors indicate the provinces where positive and negative samples were detected, respectively

Supplementary file2 (PDF 300 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karayel-Hacioglu, I., Gul, B. & Alkan, F. Molecular characterization of picobirnaviruses in small ruminants with diarrhea in Turkey. Virus Genes 58, 238–243 (2022). https://doi.org/10.1007/s11262-022-01894-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-022-01894-9

Keywords

Navigation