Skip to main content

Advertisement

Log in

Epstein–Barr virus miR-BART4-3p regulates cell proliferation, apoptosis, and migration by targeting AXL in gastric carcinoma

  • Original Paper
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

To investigate the role of miR-BART4-3p in EBV-associated gastric cancer (EBVaGC) and its regulation of cell proliferation, apoptosis, and migration by targeting AXL in GC. Quantitative real-time PCR and western blot were used to detect the expression of AXL. The methylation status of AXL gene promoter region was determined by bisulfite sequencing PCR. Luciferase reporter assay was used to detect whether miR-BART4-3p targets AXL. The key molecules of EMT and PI3K/AKT pathway were used to examine by western blot. CCK8, Transwell, and flow cytometry were used to detect the phenotypic gastric cancer cells after interference with AXL and miR-BART4-3p. EBV infection inhibited the expression of AXL in GC cells and the inhibition was not caused by the change of promoter methylation status. MiR-BART4-3p directly targeted AXL. Moreover, both inhibition of miR-BART4-3p and AXL inhibited cell proliferation and migration and promoted cell apoptosis. In addition, E-cadherin, Vimentin, ZEB1, and p-AKT were found to be the downstream molecules of the miR-BART4-3p/AXL pathway. The change of promoter methylation status was not the reason for the downregulation of AXL expression in EBV-positive cells. MiR-BART4-3p may inhibit the proliferation and migration and promote apoptosis of GC cells by directly targeting AXL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ayee R, Ofori M, Wright E, Quaye O (2020) Epstein Barr virus associated lymphomas and epithelia cancers in humans. J Cancer 11:1737–1750. https://doi.org/10.7150/jca.37282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Burke A, Yen TS, Shekitka KM, Sobin LH (1990) Lymphoepithelial carcinoma of the stomach with Epstein-Barr virus demonstrated by polymerase chain reaction. Mod Pathol 3:377–380

    CAS  PubMed  Google Scholar 

  3. Fukayama M (2010) Epstein-Barr virus and gastric carcinoma. Pathol Int 60:337–350. https://doi.org/10.1111/j.1440-1827.2010.02533.x

    Article  CAS  PubMed  Google Scholar 

  4. Thorsson V, Al E, Reynolds SM, Bernard B, Miller M, Bass AJ, Shmulevich I (2014) Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513:202–209. https://doi.org/10.1038/nature13480

    Article  CAS  Google Scholar 

  5. Camargo MC, Kim WH, Chiaravalli AM et al (2014) Improved survival of gastric cancer with tumour Epstein-Barr virus positivity: an international pooled analysis. Gut 63:236–243. https://doi.org/10.1136/gutjnl-2013-304531

    Article  PubMed  Google Scholar 

  6. Park JH, Kim EK, Kim YH et al (2016) Epstein-Barr virus positivity, not mismatch repair-deficiency, is a favorable risk factor for lymph node metastasis in submucosa-invasive early gastric cancer. Gastric Cancer 19:1041–1051. https://doi.org/10.1007/s10120-015-0565-1

    Article  CAS  PubMed  Google Scholar 

  7. Tanaka M, Siemann DW (2020) Gas6/Axl signaling pathway in the tumor immune microenvironment. Cancers (Basel) 12:1850. https://doi.org/10.3390/cancers12071850

    Article  CAS  Google Scholar 

  8. Shafit-Zagardo B, Gruber RC, Dubois JC (2018) The role of TAM family receptors and ligands in the nervous system: From development to pathobiology. Pharmacol Ther 188:97–117. https://doi.org/10.1016/j.pharmthera.2018.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nakano T, Kawamoto K, Kishino J, Nomura K, Higashino K, Arita H (1997) Requirement of γ-carboxyglutamic acid residues for the biological activity of Gas6: contribution of endogenous Gas6 to the proliferation of vascular smooth muscle cells. Biochem J 323:387–392. https://doi.org/10.1042/bj3230387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bellido-Martín L, de Frutos PG (2008) Vitamin K-dependent actions of Gas6. Vitam Horm 78:185–209. https://doi.org/10.1016/S0083-6729(07)00009-X

    Article  CAS  PubMed  Google Scholar 

  11. Li Y, Ye X, Tan C, Hongo JA, Zha J, Liu J, Kallop D, Ludlam MJC, Pei L (2009) Axl as a potential therapeutic target in cancer: role of Axl in tumor growth, metastasis and angiogenesis. Oncogene 28:3442. https://doi.org/10.1038/onc.2009.212

    Article  CAS  PubMed  Google Scholar 

  12. Gay CM, Balaji K, Byers LA (2017) Giving AXL the axe: targeting AXL in human malignancy. Br J Cancer 116(4):415–423. https://doi.org/10.1038/bjc.2016.428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cruz VH, Arner EN, Du W, Bremauntz AE, Brekken RA (2019) Axl-mediated activation of TBK1 drives epithelial plasticity in pancreatic cancer. JCI Insight 5:e126117. https://doi.org/10.1172/jci.insight.126117

    Article  Google Scholar 

  14. Li M, Ye J, Zhao G, Hong G, Hu X, Cao K, Wu Y, Lu Z (2019) Gas6 attenuates lipopolysac -charide-induced TNF-α expression and apoptosis in H9C2 cells through NF-κB and MAPK inhibition via the Axl/PI3K/Akt pathway. Int J Mol Med 44:982–994. https://doi.org/10.3892/ijmm.2019.4275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sawabu T, Seno H, Kawashima T et al (2007) Growth arrest-specific gene 6 and Axl signaling enhances gastric cancer cell survival via Akt pathway. Mol Carcinog 46:155–164. https://doi.org/10.1002/mc.20211

    Article  CAS  PubMed  Google Scholar 

  16. Gjerdrum C, Tiron C, Høiby T et al (2010) Axl is an essential epithelial-to-mesenchymal transition-induced regulator of breast cancer metastasis and patient survival. Proc Natl Acad Sci U S A 107(3):1124–1129. https://doi.org/10.1073/pnas.0909333107

    Article  PubMed  Google Scholar 

  17. Pfeffer S (2007) Identification of virally encoded microRNAs. Methods Enzymol 427:51–63. https://doi.org/10.1016/S0076-6879(07)27003-X

    Article  CAS  PubMed  Google Scholar 

  18. Barth S, Meister G, Grässer FA (2011) EBV-encoded miRNAs. Biochim Biophys Acta 1809:631–640. https://doi.org/10.1016/j.bbagrm.2011.05.010

    Article  CAS  PubMed  Google Scholar 

  19. Chen SJ, Chen GH, Chen YH, Liu CY, Chang KP, Chang YS, Chen HC (2010) Characterization of Epstein-Barr virus miRNAome in nasopharyngeal carcinoma by deep sequencing. PLoS ONE 5:e12745. https://doi.org/10.1371/journal.pone.0012745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Marquitz AR, Mathur A, Shair KH, Raab-Traub N (2012) Infection of Epstein-Barr virus in a gastric carcinoma cell line induces anchorage independence and global changes in gene expression. Proc Natl Acad Sci USA 109:9593–9598. https://doi.org/10.1073/pnas.1202910109

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liu X, Tang X, Zhang S, Wang Y, Wang X, Zhao C, Luo B (2012) Methylation and expression of retinoblastoma and transforming growth factor-β1 genes in Epstein-Barr virus-associated and -negative gastric carcinomas. Gastroenterol Res Pract 2012:906017. https://doi.org/10.1155/2012/906017

    Article  PubMed  PubMed Central  Google Scholar 

  22. Raab-Traub N (2012) Novel mechanisms of EBV-induced oncogenesis. Curr OpinVirol 2:453–458. https://doi.org/10.1016/j.coviro.2012.07.001

    Article  CAS  Google Scholar 

  23. Zhao MH, Sun L, Li P, Liu L, Wang XF (2019) Sequence analysis of Epstein-Barr virus (EBV) BNLF2a gene in malignant hematopathy of Northern China. Future Virol 14:219–226. https://doi.org/10.2217/fvl-2018-0129

    Article  CAS  Google Scholar 

  24. Wimmel A, Glitz D, Kraus A, Roeder J, Schuermann M (2001) Axl receptor tyrosine kinase expression in human lung cancer cell lines correlates with cellular adhesion. Eur J Cancer 37:2264–2274. https://doi.org/10.1016/s0959-8049(01)00271-4

    Article  CAS  PubMed  Google Scholar 

  25. Zhang YX, Knyazev PG, Cheburkin YV et al (2008) AXL is a potential target for therapeutic intervention in breast cancer progression. Cancer Res 68:1905–1915. https://doi.org/10.1158/0008-5472.CAN-07-2661

    Article  CAS  PubMed  Google Scholar 

  26. Paccez JD, Vasques GJ, Correa RG et al (2013) The receptor tyrosine kinase Axl is an essential regulator of prostate cancer proliferation and tumor growth and represents a new therapeutic target. Oncogene 32(6):689–698. https://doi.org/10.1038/onc.2012.89

    Article  CAS  PubMed  Google Scholar 

  27. He L, Lei Y, Hou J, Wu J, Lv G (2020) Implications of the receptor tyrosine kinase Axl in gastric cancer progression. OncoTargets Ther 13:5901–5911. https://doi.org/10.2147/OTT.S257606

    Article  CAS  Google Scholar 

  28. Wang K, Yuen ST, Xu J et al (2014) Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet 46:573–582. https://doi.org/10.1038/ng.2983

    Article  CAS  Google Scholar 

  29. Mudduluru G, Allgayer H (2008) The human receptor tyrosine kinase Axl gene–promoter characterization and regulation of constitutive expression by Sp1, Sp3 and CpG methylation. Biosci Rep 28:161–176. https://doi.org/10.1042/BSR20080046

    Article  CAS  PubMed  Google Scholar 

  30. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355. https://doi.org/10.1038/nature02871

    Article  CAS  Google Scholar 

  31. Liu J, Zhang Y, Liu W et al (2020) MiR-BART1-5p targets core 2β-1,6-acetylglucosaminyltransferase GCNT3 to inhibit cell proliferation and migration in EBV-associated gastric cancer. Virology 541:63–74. https://doi.org/10.1016/j.virol.2019.12.004

    Article  CAS  PubMed  Google Scholar 

  32. Lyu X, Wang J, Guo X et al (2018) EBV-miR-BART1-5P activates AMPK/mTOR/HIF1 pathway via a PTEN independent manner to promote glycolysis and angiogenesis in nasopharyngeal carcinoma. PLoS Pathog 14:e1007484. https://doi.org/10.1371/journal.ppat.1007484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang JS, Cho CY, Hong CC et al (2013) Oxidative stress enhances Axl-mediated cell migration through an Akt1/Rac1-dependent mechanism. Free Radic Biol Med 65:1246–1256. https://doi.org/10.1016/j.freeradbiomed.2013.09.011

    Article  CAS  PubMed  Google Scholar 

  34. Linger RM, Cohen RA, Cummings CT et al (2013) Mer or Axl receptor tyrosine kinase inhibition promotes apoptosis, blocks growth and enhances chemosensitivity of human non-small cell lung cancer. Oncogene 32:3420–3431. https://doi.org/10.1038/onc.2012.355

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by China Postdoctoral Science Foundation (2020M682126).

Author information

Authors and Affiliations

Authors

Contributions

BL and MHZ conceived and designed the experiments; MHZ, WL, YZ, JL, and HS performed the experiments; MH, WL, and YZ analyzed the experimental data; MHZ drafted the manuscript; MHZ and WL revised the manuscript. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Bing Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of the Medical Ethics Committee at the Medical College of Qingdao University and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Additional information

Edited by Hartmut Hengel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, MH., Liu, W., Zhang, Y. et al. Epstein–Barr virus miR-BART4-3p regulates cell proliferation, apoptosis, and migration by targeting AXL in gastric carcinoma. Virus Genes 58, 23–34 (2022). https://doi.org/10.1007/s11262-021-01882-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-021-01882-5

Keywords

Navigation