Skip to main content
Log in

Integration specificity of LTR-retrotransposons and retroviruses in the Drosophila melanogaster genome

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Integration of DNA copies in a host genome is a necessary stage in the life cycle of retroviruses and LTR-retrotransposons. There is still no clear understanding of integration specificity of retroelements into a target site. The selection of the target DNA is believed to potentially affect a number of factors such as transcriptional status, association with histones and other DNA-binding proteins, and DNA bending. The authors performed a comprehensive computer analysis of the integration specificity of Drosophila melanogaster LTR-retrotransposons and retroviruses including an analysis of the nucleotide composition of targets, terminal sequences of LTRs, and integrase sequences. A classification of LTR-retrotransposons based on the integration specificity was developed. All the LTR-retrotransposons of the gypsy group with three open frames (errantiviruses) and their derivatives with two open frames demonstrate strict specificity to a target DNA selection. Such specificity correlates with the structural features of the target DNA: bendability, A-philicity, or protein-induced deformability. The remaining LTR-retrotransposons (copia and BEL groups, blastopia and 412 subgroups of the gypsy group) do not show specificity of integration. Chromodomain is present in the integrase structures of blastopia and 412 subgroup LTR-retrotransposons and may facilitate the process of non-specific integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.F. Le Grice, Biochemistry 42(49), 14349–14355 (2003)

    Article  PubMed  Google Scholar 

  2. P. Hindmarsh, J. Leis, Microbiol. Mol. Biol. Rev. 63(4), 836–843 (1999)

    PubMed  CAS  Google Scholar 

  3. M.K. Lewinski, F.D. Bushman, Adv. Genet. 55, 147–181 (2005)

    Article  PubMed  CAS  Google Scholar 

  4. P.A. Rice, T.A. Baker, Nat. Struct. Bio. 8(5), 302–307 (2001)

    Article  CAS  Google Scholar 

  5. H.E. Brown, H. Chen, A. Engelman, J. Virol. 73(11), 9011–9020 (1999)

    PubMed  CAS  Google Scholar 

  6. R.L. LaFemina, P.L. Callahan, M.G. Cordingley, J. Virol. 65, 5624–5630 (1991)

    PubMed  CAS  Google Scholar 

  7. D. Pruss, R. Reeves, F.D. Bushman, A.P. Wolffe, J. Biol. Chem. 269(40), 25031–25041 (1994)

    PubMed  CAS  Google Scholar 

  8. H.P. Müller, H.E. Varmus, EMBO J. 13(19), 4704–4714 (1994)

    PubMed  Google Scholar 

  9. R.S. Mitchell, B.F. Beitzel, A.R. Schroder, P. Shinn, H. Chen, C.C. Berry, J.R. Ecker, F.D. Bushman, PLoS Biol. 2(8), E234 (2004)

    Article  PubMed  Google Scholar 

  10. X. Wu, Y. Li, B. Crise, S.M. Burgess, D.J. Munroe, J. Virol. 79(8), 5211–5214 (2005)

    Article  PubMed  CAS  Google Scholar 

  11. A.B. Kuzin, N.V. Lyubomirskaya, B.M. Khudaibergenova, Y.V. Ilyin, A.I. Kim, Nucleic Acids Res. 22(22), 4641–4645 (1994)

    Article  PubMed  CAS  Google Scholar 

  12. L.N. Nefedova, N.V. Ljubomirskaya, Yu.V. Ilyin, A.I. Kim, Russ. J. Genet. 42(12), 1656–1663 (2006)

    Article  CAS  Google Scholar 

  13. A. Kim, C. Terzian, P. Santamaria, A. Pélisson, N. Prud’homme, A. Bucheton, PNAS USA 91, 1285–1289 (1994)

    Article  PubMed  CAS  Google Scholar 

  14. S.U. Song, T. Gerasimova, M. Kurkulos, J.D. Boeke, V.G. Corces, Genes Dev. 8, 2046–2057 (1994)

    Article  PubMed  CAS  Google Scholar 

  15. J.D. Boeke, T.H. Eickbush, S.B. Sandmeyer, D.F. Voytas D.F, in ICTVdB—The Universal Virus Database, version 4, New York, 2006, ed. by C. Büchen-Osmond, http://www.ncbi.nlm.nih.gov/ICTVdb/Ictv/fs_index.htm

  16. J.S. Kaminker, C.M. Bergman, B. Kronmiller, J. Carlson, R. Svirskas, S. Patel, E. Frise, D.A. Wheeler, S.E. Lewis, G.M. Rubin, M. Ashburner, S.E. Celniker, Genome Biol. 3(12), RESEARCH0084 (2002)

    Article  PubMed  Google Scholar 

  17. N.J. Bowen, J.F. McDonald, Genome Res. 11, 1527–1540 (2001)

    Article  PubMed  CAS  Google Scholar 

  18. L.N. Nefedova, A.I. Kim, Mol. Biol. (Mosk.) 43(5), 747–756 (2009)

    Article  CAS  Google Scholar 

  19. C. Terzian, A. Pelisson, A. Bucheton, BMC Evol. Biol. 1, 3 (2001)

    Article  PubMed  CAS  Google Scholar 

  20. I. Brukner, R. Sánchez, D. Suck, S. Pongor, EMBO J. 14(8), 1812–1818 (1995)

    PubMed  CAS  Google Scholar 

  21. M.A. O’Neill, J.K. Barton, PNAS USA 99(26), 16543–16550 (2002)

    Article  PubMed  Google Scholar 

  22. N.C. Horton, B.C. Finzel, J. Mol. Biol. 264(3), 521–533 (1996)

    Article  PubMed  CAS  Google Scholar 

  23. V.I. Ivanov, L.E. Minchenkova, Mol. Biol. (Mosk.) 28(6), 1258–1271 (1994)

    CAS  Google Scholar 

  24. D.M. Crothers, PNAS USA 95(26), 15163–15165 (1998)

    Article  PubMed  CAS  Google Scholar 

  25. C. Berry, S. Hannenhalli, J. Leipzig, F.D. Bushman, PLoS Comput. Biol. 2(11), e157 (2006)

    Article  PubMed  Google Scholar 

  26. E.S. Svarovskaia, S.R. Cheslock, W.H. Zhang, W.S. Hu, V.K. Pathak, Front. Biosci. 8, d117–d134 (2003)

    Article  PubMed  Google Scholar 

  27. T.D. Mashkova, N.Y. Oparina, M.H. Lacroix, L.I. Fedorova, I.G. Tumeneva, O.L. Zinovieva, L.L. Kisselev, J. Mol. Biol. 305(1), 33–48 (2001)

    Article  PubMed  CAS  Google Scholar 

  28. O. Delelis, K. Carayon, A. Saïb, E. Deprez, J.F. Mouscadet, Retrovirology 5, 114 (2008)

    Article  PubMed  Google Scholar 

  29. A.M. Woerner, C.J. Marcus-Sekura, Nucleic Acids Res. 21(15), 3507–3511 (1993)

    Article  PubMed  CAS  Google Scholar 

  30. M. Katzman, M. Sudol, J. Virol. 72(3), 1744–1753 (1998)

    PubMed  CAS  Google Scholar 

  31. Z. Wu, G. Chaconas, EMBO J. 14, 3835–3843 (1995)

    PubMed  CAS  Google Scholar 

  32. R.A. Lutzke, C. Vint, R.H. Plasterk, Nucleic Acids Res. 22, 4125–4131 (1994)

    Article  PubMed  CAS  Google Scholar 

  33. A.D. Leavitt, L. Shiue, H.E. Varmus, J. Biol. Chem. 268(3), 2113–2119 (1993)

    PubMed  CAS  Google Scholar 

  34. T.M. Jenkins, D. Esposito, A. Engelman, R. Craigie, EMBO J. 16, 6849–6859 (1997)

    Article  PubMed  CAS  Google Scholar 

  35. J.L. Gerton, S. Ohgi, M. Olsen, J. DeRisi, P.O. Brown, J. Virol. 72, 5046–5055 (1998)

    PubMed  CAS  Google Scholar 

  36. D. Esposito, R. Craigie, EMBO J. 17, 5832–5843 (1998)

    Article  PubMed  CAS  Google Scholar 

  37. A.L. Harper, L.M. Skinner, M. Sudol, M. Katzman, J. Virol. 75(16), 7756–7762 (2001)

    Article  PubMed  CAS  Google Scholar 

  38. R. Paro, D.S. Hogness, PNAS USA 88(1), 263–267 (1991)

    Article  PubMed  CAS  Google Scholar 

  39. H.S. Malik, T.H. Eickbush, J. Virol. 73(6), 5186–9510 (1999)

    PubMed  CAS  Google Scholar 

  40. F.D. Bushman, A. Engelman, I. Palmer, P. Wingfield, R. Craigie, PNAS USA 90, 3428–3432 (1993)

    Article  PubMed  CAS  Google Scholar 

  41. A.R. Schröder, P. Shinn, H. Chen, C. Berry, J.R. Ecker, F. Bushman, Cell 110(4), 521–552 (2002)

    Article  PubMed  Google Scholar 

  42. A. Ciuffi, M. Llano, E. Poeschla, C. Hoffmann, J. Leipzig, P. Shinn, J.R. Ecker, F. Bushman, Nat. Med. 11(12), 1287–1289 (2005)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Russian Foundation for Basic Research (Grant no. 08-04-00693) and the Federal Program “Scientific and Pedagogical Specialists of Innovative Russia” for 2009–2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nefedova, L.N., Mannanova, M.M. & Kim, A.I. Integration specificity of LTR-retrotransposons and retroviruses in the Drosophila melanogaster genome. Virus Genes 42, 297–306 (2011). https://doi.org/10.1007/s11262-010-0566-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-010-0566-4

Keywords

Navigation