Skip to main content

Advertisement

Log in

Climate and soil texture influence patterns of forb species richness and composition in big sagebrush plant communities across their spatial extent in the western U.S.

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Big sagebrush (Artemisia tridentata Nutt.) plant communities are widespread in western North America and, similar to all shrub steppe ecosystems worldwide, are composed of a shrub overstory layer and a forb and graminoid understory layer. Forbs account for the majority of plant species diversity in big sagebrush plant communities and are important for ecosystem function. Few studies have explored geographic patterns of forb species richness and composition and their relationships with environmental variables in these communities. Our objectives were to examine the fine and broad-scale spatial patterns in forb species richness and composition and the influence of environmental variables. We sampled forb species richness and composition along transects at 15 field sites in Colorado, Idaho, Montana, Nevada, Oregon, Utah, and Wyoming, built species-area relationships to quantify differences in forb species richness at sites, and used Principal Components Analysis, non-metric multidimensional scaling, and redundancy analysis to identify relationships among environmental variables and forb species richness and composition. We found that species richness was most strongly correlated with soil texture, while species composition was most related to climate. The combination of climate and soil texture influences water availability, which our results indicate has important consequences for forb species richness and composition, and suggests that climate change-induced modification of soil water availability may have important implications for plant species diversity in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arrhenius O (1921) Species and area. J Ecol 9:95–99. doi:10.2307/2255763

    Article  Google Scholar 

  • Auerbach M, Shmida A (1987) Spatial scale and the determinants of plant species richness. Trends Ecol Evol 2:238–242. doi:10.1016/0169-5347(87)90005-X

    Article  CAS  PubMed  Google Scholar 

  • Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta DA, Schaeffer SM (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–235. doi:10.1007/s00442-004-1519-1

    Article  PubMed  Google Scholar 

  • Bai Y, Wu J, Xing Q, Pan Q, Huang J, Yang D, Han X (2008) Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau. Ecology 89:2140–2153. doi:10.1890/07-0992.1

    Article  PubMed  Google Scholar 

  • Bethlenfalvay GJ, Dakessian S (1984) Grazing effects on mycorrhizal colonization and floristic composition of the vegetation on a semiarid range in northern Nevada. J Range Manag 37:312–316. doi:10.2307/3898701

    Article  Google Scholar 

  • Bouyoucos GJ (1951) A recalibration of the hydrometer method for making mechanical analysis of soils. Agronomy 43:434–438

    Article  CAS  Google Scholar 

  • Bradley BA (2010) Assessing ecosystem threats from global and regional change: hierarchical modeling of risk to sagebrush ecosystems from climate change, land use and invasive species in Nevada, USA. Ecography 33:198–208. doi:10.1111/j.1600-0587.2009.05684.x

    Article  Google Scholar 

  • Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, Sankaran M, Jousseau C (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989–992. doi:10.1038/nature0520

    Article  CAS  PubMed  Google Scholar 

  • Chapin FS III, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Diaz S (2000) Consequences of changing biodiversity. Nature 405:234–242. doi:10.1038/35012241

    Article  CAS  PubMed  Google Scholar 

  • Connelly JW, Knick ST, Schroeder MA, Stiver SJ (2004) Conservation assessment of Greater Sage-Grouse and sagebrush habitats. Unpublished Report. Western Association of Fish and Wildlife Agencies, Cheyenne, WY

    Google Scholar 

  • Conner EF, McCoy ED (1979) The statistics and biology of the species-area relationship. Am Nat 113:791–833. doi:10.1086/283438

    Article  Google Scholar 

  • Crawley MJ, Harral JE (2001) Scale dependence in plant biodiversity. Science 291:864–868. doi:10.1126/science.291.5505.864

    Article  CAS  PubMed  Google Scholar 

  • Creutzburg M, Halofsky J, Christopher T (2015) Climate change and land management in the rangelands of central Oregon. Environ Manag 55:43–55. doi:10.1007/s00267-014-0362-3

    Article  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection or the preservation of favoured races in the struggle for life. John Murray, London

    Book  Google Scholar 

  • Davies KW, Bates JD, Miller RF (2007) Environmental and vegetation relationships of the Artemisia tridentata ssp. wyomingensis alliance. J Arid Environ 70:478–494. doi:10.1016/j.jaridenv.2007.01.010

    Article  Google Scholar 

  • Davies KW, Svejar TJ, Bates JD (2009) Interaction of historical and nonhistorical disturbances maintains native plant communities. Ecol Appl 19:1536–1545. doi:10.1890/09-0111.1

    Article  CAS  PubMed  Google Scholar 

  • Davies KW, Nafus AM, Boyd CS, Hulet A, Bates JD (2016) Effects of using winter grazing as a fuel treatment on Wyoming big sagebrush plant communities. Rangel Ecol Manag 69:179–184. doi:10.1016/j.rama.2015.12.005

    Article  Google Scholar 

  • Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20

    Article  Google Scholar 

  • Fischer G, Nachtergaele F, Prieler S, van Velthuizen HT, Verelst L, Wiberg D (2008) Global agro-ecological zones assessment for agriculture (GAEZ). IIASA, Laxenburg and FAO, Rome. http://webarchive.iiasa.ac.at/. Accessed Aug 2015

  • Fraser LH et al (2015) Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science 349:302–305. doi:10.1126/science.aab3916

    Article  CAS  PubMed  Google Scholar 

  • Gaston KJ (2000) Global patterns in biodiversity. Nature 405:220–227. doi:10.1038/35012228

    Article  CAS  PubMed  Google Scholar 

  • Gazol A, Tamme R, Takkis K, Kasari L, Saar L, Helm A, Pärtel M (2012) Landscape-and small-scale determinants of grassland species diversity: direct and indirect influences. Ecography 35:944–951. doi:10.1111/j.1600-0587.2012.07627.x

    Article  Google Scholar 

  • Grace JB et al (2016) Integrative modeling reveals mechanisms linking productivity and plant species richness. Nature 529:390–393. doi:10.1038/nature16524

    Article  CAS  PubMed  Google Scholar 

  • Harrell FE Jr (2014). Hmisc: harrell miscellaneous. R package version 3.14-6. http://CRAN.R-project.org/package=Hmisc. Accessed Aug 2014

  • Hawkins BA, Field R, Cornell HV, Currie DJ, Guegan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’Brien EM, Porter EE, Turner JRG (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology 84:3105–3117. doi:10.1890/03-8006

    Article  Google Scholar 

  • Hillebrand H (2004) On the generality of the latitudinal diversity gradient. Am Nat 163:192–211. doi:10.1086/381004

    Article  PubMed  Google Scholar 

  • Homer CG, Xian G, Aldridge CL, Meyer DK, Loveland TR, O’Donnell MS (2015) Forecasting sagebrush ecosystem components and Greater Sage-Grouse habitat for 2050: learning from past climate patterns and Landsat imagery to predict the future. Ecol Indic 55:131–145. doi:10.1016/j.ecolind.2015.03.002

    Article  Google Scholar 

  • Hooper DU, Adair EC, Cardinale BJ, Byrnes JEK, Hungate BK, Matulich KL, Gonzalez A, Duffy JE, Gamfeldt L, O’Conner MI (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486:105–108. doi:10.1038/nature11118

    CAS  PubMed  Google Scholar 

  • Hutchinson GE (1959) Homage to Santa Rosalia or why are there so many kinds of animals? Am Nat 93:145–159

    Article  Google Scholar 

  • IPCC (2014) Climate Change 2014: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Intergovernmental panel on climate change, Geneva

  • Isbell et al (2015) Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526:574–577. doi:10.1038/nature15374

    Article  CAS  PubMed  Google Scholar 

  • Jensen ME, Simonson GH, Dosskey M (1990) Correlation between soils and sagebrush-dominated plant communities of northeastern Nevada. Soil Sci Soc Am J 54:902–910. doi:10.2136/sssaj1990.03615995005400030049x

    Article  Google Scholar 

  • Kachergis E, Fernandez-Gimenez ME, Rocca ME (2012) Differences in plant species composition as evidence of alternate states in the sagebrush steppe. Rangel Ecol Manag 65:486–497. doi:10.2111/REM-D-11-00137.1

    Article  Google Scholar 

  • Knick ST, Dobkin DS, Rotenberry JT, Schroeder MA, Vander Haegen WM, Van Riper C (2003) Teetering on the edge or too late? Conservation and research issues for avifauna of sagebrush habitats. Condor 105:611–634. doi:10.1650/7329

    Article  Google Scholar 

  • Lauenroth WK, Schlaepfer DR, Bradford JB (2014) Ecohydrology of dry regions: storage versus pulse soil water dynamics. Ecosystems 17:1469–1479. doi:10.1007/s10021-014-9808-y

    Article  CAS  Google Scholar 

  • Maestre FT, Quero JL, Gotelli NJ, Escudero A, Ochoa V, Delgado-Baquerizo M, Garcia-Gomez M, Bowker MA, Soliveres S, Escolar C, Garcia-Palacios P, Berdugo M, Valencia E, Gozalo B, Gallardo A, Aquilera L, Arredondo T, Blones J, Boeken B, Bran D, Conceicao AA, Cabrera N, Chaieb M, Derak M, Eldridge DJ, Espinosa CI, Florentino A, Gaitan J, Gatica MG, Ghiloufi W, Gomez-Gonzalez S, Gutierrez JR, Hernandez RM, Huang X, Huber-Sannwald E, Jankju M, Miriti M, Monerris J, Mau RL, Morici E, Naseri K, Ospina A, Polo V, Prina A, Pucheta E, Ramirez-Collantes DA, Romao R, Tighe M, Torrez-Diaz C, Val J, Viega JP, Wang D, Zaady E (2012) Plant species richness and ecosystem multifunctionality in global drylands. Science 335:214–218. doi:10.1126/science.1215442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manier DJ, Wood DJA, Bowen ZH, Donovan RM, Holloran MJ, Juliusson LM, Mayne KS, Oyler-McCance SJ, Quamen FR, Saher DJ, Titolo AJ (2013) Summary of science, activities, programs, and policies that influence the rangewide conservation of Greater Sage-Grouse (Centrocercus urophasianus). U.S. geological survey open-file report 2013-1098. Reston, VA

  • Matthew TJ, Steinbauer MJ, Tzirkalli E, Triantis KA, Whittaker RJ (2014) Thresholds and the species-area relationship: a synthetic analysis of habitat islands datasets. J Biogeogr 41:1018–1028. doi:10.1111/jbi.12286

    Article  Google Scholar 

  • McCann KS (2000) The diversity-stability debate. Nature 405:228–233. doi:10.1038/35012234

    Article  CAS  PubMed  Google Scholar 

  • McCune B, Grace JB (2002) Analysis of ecological communities, vol 28. MjM Software Design, Gleneden Beach

    Google Scholar 

  • Miller RF, Knick ST, Pyke DA, Meinke CW, Hanser SE, Wisdom MJ, Hild AL (2011) Characteristics of sagebrush habitats and limitations to long-term conservation. In: Knick ST, Connelly JW (eds) Greater Sage-Grouse: ecology and conservation of a landscape species and its habitats. Studies in avian biology (vol. 38). University of California Press, Berkeley, pp 145–184

  • Mitchell RM, Bakker JD, Vincent JB, Davies GM (2017) Relative importance of abiotic, biotic, and disturbance drivers of plant community structure in the sagebrush steppe. Ecol Appl. doi:10.1002/eap.1479

    PubMed  Google Scholar 

  • National Oceanic and Atmospheric Administration (2015) Climate data online. https://www.ncdc.noaa.gov/cdo-web/datasets. Accessed July 2015

  • NatureServe (2016) NatureServe explorer: an online encyclopedia of life. Version 7.1 NatureServe, Arlington. http://www.explorer.natureserve.org. Accessed Jan 2016

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2015) Vegan: community ecology package. R package version 2.2-1. http://CRAN.R-project.org/package=vegan. Accessed Sept 2015

  • Oliver TH et al (2015) Biodiversity and resilience of ecosystem functions. Trends Ecol Evol 30:673–684. doi:10.1016/j.tree.2015.08.009

    Article  PubMed  Google Scholar 

  • Palmquist KA, Schlaepfer DR, Bradford JB, Lauenroth WK (2016a) Mid-latitude shrub steppe ecosystems: climate change consequences for soil water resources. Ecology 97:2342–2354. doi:10.1002/ecy.1457

    Article  PubMed  Google Scholar 

  • Palmquist KA, Schlaepfer DR, Bradford JB, Lauenroth WK (2016b) Spatial and ecological variation in dryland ecohydrological responses to climate change: implications for management. Ecosphere 7:1–20. doi:10.1002/ecs2.1590

    Article  Google Scholar 

  • Passey HB, Hugie VK, Williams EW, Ball DE (1982) Relationships between soil, plant composition, and climate on rangelands of the Intermountain West. USDA Soil Conservation Service Technical Bulletin No. 1669

  • Pennington VE, Schlaepfer DR, Beck JL, Bradford JB, Palmquist KA, Lauenroth WK (2016) Sagebrush, Greater Sage-Grouse, and the occurrence and importance of forbs. West N Am Nat 76:298–312. doi:10.3398/064.076.0307

    Article  Google Scholar 

  • Peñuelas J, Prieto P, Beier C, Cesaraccio C, de Angeliss P, de Datos G, Emmett BA, Estiarte M, Garadnai J, Gorissen A, Láng EK, Kröel-Dulay G, Llorens L, Pellizzaro G, Riis-Neilsen T, Schmidt IK, Sirca C, Sowerby A, Spano D, Tietemass A (2007) Response of plant species richness and primary productivity in shrublands along a north-south gradient in Europe to 7 years of experimental warming and drought: reductions in primary productivity in the heat and drought year of 2003. Glob Change Biol 13:2563–2581. doi:10.1111/j.1365-2486.2007.01464.x

    Article  Google Scholar 

  • R Core Development Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ricklefs RE (2004) A comprehensive framework for global patterns in biodiversity. Ecol Lett 7:1–15. doi:10.1046/j.1461-0248.2003.00554.x

    Article  Google Scholar 

  • Ripplinger J, Franklin J, Edwards TC (2015) Legacy effects of no-analogue disturbances alter plant community diversity and composition in semi-arid sagebrush steppe. J Veg Sci 26:923–933. doi:10.1111/jvs.12293

    Article  Google Scholar 

  • Roberts DW (2013) Labdsv: ordination and multivariate analysis for ecology. R package version 1.6-1. http://CRAN.R-project.org/package=labdsv. Accessed Sept 2015

  • Sala OE, Chapin FS III, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:54–59. doi:10.1126/science.2875459.177

    Article  Google Scholar 

  • Schlaepfer DR, Lauenroth WK, Bradford JB (2012a) Effects of ecohydrological variables on current and future ranges, local suitability patterns, and model accuracy in big sagebrush. Ecography 35:374–384. doi:10.1111/j.1600-0587.2011.06928

    Article  Google Scholar 

  • Schlaepfer DR, Lauenroth WK, Bradford JB (2012b) Ecohydrological niche of sagebrush ecosystems. Ecohydrology 5:453–466. doi:10.1002/eco.23

    Article  Google Scholar 

  • Schlaepfer DR, Bradford JB, Lauenroth WK, Munson SM, Tietjen B, Hall SA, Wilson SD, Duniway MC, Gensuo J, Pyke DA, Lkhagva A, Jamiyansharav K (2017) Climate change reduces extent of temperate drylands and intensifies drought in deep soils. Nat Commun 8:14196. doi:10.1038/ncomms14196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shumar ML, Anderson JE (1986) Gradient analysis of vegetation dominated by two subspecies of big sagebrush. J Range Manag 39:156–166. doi:10.2307/3899290

    Article  Google Scholar 

  • Swanson SR, Simonson GH, Buckhouse JC (1986) Physical and chemical soil properties of three big sagebrush subspecies. Soil Sci Soc Am J 50:783–787. doi:10.2136/sssaj1986.03615995005000030043x

    Article  Google Scholar 

  • Tilman D, Downing JA (1994) Biodiversity and stability in grasslands. Nature 367:363–365. doi:10.1038/367363a0

    Article  Google Scholar 

  • Ulrich W et al (2014) Climate and soil attributes determine plant species turnover in global drylands. J Biogeogr 41:2307–2319. doi:10.1111/jbi.12377

    Article  PubMed  PubMed Central  Google Scholar 

  • Wallace AR (1878) Tropical nature, and other essays. Macmillian and Company, London

    Book  Google Scholar 

  • West NE (1983) Western Intermountain sagebrush steppe. In: West NE (ed) Ecosystem of the world 5: temperate deserts and semi-deserts. Elsevier Scientific Publishing Company, New York

    Google Scholar 

  • White EP, Hurlbert AH (2010) The combined influence of the local environment and regional enrichment on bird species richness. Am Nat 175:35–43. doi:10.1086/649578

    Article  Google Scholar 

  • Wickham, H (2011) The split-apply-combine strategy for data analysis. J Stat Softw 40:1–29. http://www.jstatsoft.org/v40/i01/. Accessed Aug 2014

  • Willis JC (1922) Age and area. The University Press, Cambridge

    Google Scholar 

  • Wisdom MJ, Rowland MM, Suring LH (2005) Habitat threats in the sagebrush ecosystem: methods of regional assessment and applications in the Great Basin. Alliance Communication Group, Lawrence

    Google Scholar 

Download references

Acknowledgements

We thank the U.S. Geological Survey, North Central Climate Science Center (Grant G12AC 20504), the U.S. Fish and Wildlife Service (F13AC00865 & Interagency Agreement #4500054042 to USGS), Yale University, and the University of Wyoming for financial support. We thank Dr. Ron Hartman and Dr. Ernie Nelson for help with plant identification, and Lukas Lindquist, Trace Martyn, Ashley Wildeman, Jonathan Paklaian, Margarita Reza, Vincent Irizarry, and Kim Hill for help with field work and with processing soils. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria E. Pennington.

Additional information

Communicated by Lauchlan Fraser.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pennington, V.E., Palmquist, K.A., Bradford, J.B. et al. Climate and soil texture influence patterns of forb species richness and composition in big sagebrush plant communities across their spatial extent in the western U.S.. Plant Ecol 218, 957–970 (2017). https://doi.org/10.1007/s11258-017-0743-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-017-0743-9

Keywords

Navigation