Skip to main content
Log in

The trade-off between cold resistance and growth determines the Nothofagus pumilio treeline

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

The upper and poleward limit of tree distribution are usually determined by abiotic factors such as low temperature and strong winds. Thus, cold resistance is a key element for survival in high altitudes and latitudes where conditions can reduce plant growth. A trade-off between resource allocation to cold resistance and growth could emerge in populations frequently exposed to low temperatures like those in the treeline zone. We studied annual height growth and ice nucleation temperature in Nothofagus pumilio (Nothofagaceae) populations growing in its extremes of altitudinal distribution and in 3 sites situated on a latitudinal gradient in the Chilean Andes. Additionally, gas exchange, water and nitrogen use efficiency and total soluble sugar (TSS) were also measured as possible mechanisms for survival in high altitudes. Individuals from the treeline populations showed lower annual height growth and lower ice nucleation temperatures compared with those from lower populations. In the same way, individuals from more poleward populations showed lower annual height growth and lower ice nucleation temperatures. Gas exchange, water and nitrogen use efficiency and TSS were also higher in the high altitude populations. The results obtained support the hypothesis of trade-off, because the upper and poleward populations showed more cold resistance but a lower height growth. Additionally, we show that cold resistance mechanisms do not impact the physiological performance, suggesting possible adaptation of the high altitude populations. Low temperatures may be affecting cellular growth instead of photosynthesis, creating a pool of carbohydrates that could participate in cold tolerance. Other abiotic and biotic factors should be also assessed to fully understand the distributional range of Nothofagus species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alberdi M, Corcuera LJ (1991) Cold acclimation in plants. Phytochemistry 30:3177–3184

    Article  CAS  Google Scholar 

  • Alberdi M, Romero D, Wenzel H (1985) Altitudinal gradients of seasonal frost resistance of Nothofagus communities of southern Chile. Acta Oecologica 6:21–30

    Google Scholar 

  • Almeida E, Sáez F (1958) Recopilación de datos climáticos de Chile y mapas sinópticos respectivos. Ministerio de Agricultura, Santiago

    Google Scholar 

  • Bravo L, Ulloa N, Zúñiga G, Casanova A, Corcuera LJ, Alberdi M (2001) Cold resistance in Antarctic angiosperms. Physiol Plant 111:55–65

    Article  CAS  Google Scholar 

  • Cabrera HM (1996) Temperaturas bajas y límites altitudinales en ecosistemas de plantas superiores: respuestas de las especies al frío en montañas tropicales y subtropicales. Revista Chilena de Historia Natural 69:309–320

    Google Scholar 

  • Cárdenas C, Lusk C (2002) Juvenile height growth rates and sorting of three Nothofagus species on an altitudinal gradient. Gayana Botánica 59:21–25

    Google Scholar 

  • Cavieres LA, Rada F, Gracía-Nuñez C, Azocar A, Cabrera HM (2000) Gas exchange and low temperature resistance in two tropical treeline species from the Venezuelan Andes (8ºN). Acta Oecologica 21:203–211

    Article  Google Scholar 

  • Cavieres LA, Badano EI, Sierra-Almeida A, Gómez-González S, Molina-Montenegro MA (2005) Positive interactions between alpine plant species and the nurse cushion plant Laretia acaulis do not increase with elevation in the Andes of central Chile. New Phytol 169:59–69

    Article  Google Scholar 

  • Cavieres LA, Quiroz CL, Molina-Montenegro MA (2008) Facilitation of the non-native Taraxacum officinale by native nurse cushion species in the high Andes of central Chile: are there differences between nurses? Funct Ecol 22:148–156

    Article  Google Scholar 

  • Connell JH (1961) The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology 42:710–723

    Article  Google Scholar 

  • Corlett RT (1987) Post-fire succession on Mt. Wilhelm, Papua New Guinea. Biotropica 19:157–160

    Article  Google Scholar 

  • Donoso C (2003) Ecología forestal: el bosque y su medio ambiente. Editorial Universitaria, Santiago

    Google Scholar 

  • Gajardo R (1994) La vegetación natural de Chile Clasificación y distribución geográfica. Editorial Universitaria, Santiago

    Google Scholar 

  • Gezelius K, Ericsson A, Hällgren JE, Brunes L (1981) Effects of bud removal in Scots pine (Pinus sylvestris) seedlings. Physiol Plant 51:181–188

    Article  CAS  Google Scholar 

  • Grace J, Berninger F, Nagy L (2002) Impacts of climate change on the tree line. Ann Bot 90:537–544

    Article  PubMed  CAS  Google Scholar 

  • Grime JP (1979) Plant strategies and vegetation processes. Wiley, Chichester

    Google Scholar 

  • Hansen J, Beck E (1994) Seasonal changes in the utilization and turnover of assimilation products in 8-year-old Scots pine (Pinus sylvestris L.) trees. Trees 8:172–182

    Article  Google Scholar 

  • Hinckley TM, Goldstein GH, Meinzer FC, Teskey RO (1984) Environmental constraints at arctic, temperate-maritime and tropical treelines. In: Turner H, Tranquillini W (eds) Establishment and tending of sub-alpine forest: research and management. 3rd IUFRO workshop, Berlin, pp 21–370

  • Hoch G, Körner C (2003) The carbon charging of pines at the climatic treeline: a global comparison. Oecologia 135:10–21

    PubMed  Google Scholar 

  • Hoch G, Körner C (2009) Growth and carbon relations of tree line forming conifers at constant vs. variable low temperatures. J Ecol 97:57–66

    Article  Google Scholar 

  • Hoch G, Popp M, Körner C (2002) Altitudinal increase of mobile carbon pools in Pinus cembra suggest sink limitation of growth at the Swiss treeline. Oikos 98:361–374

    Article  CAS  Google Scholar 

  • Honkanen F, Haukioja E, Kitunen V (1999) Responses of Pinus sylvestris branches to simulated herbivory are modified by tree sink/source dynamics and by external resources. Funct Ecol 13:126–140

    Article  Google Scholar 

  • James JC, Grace J, Hoad SP (1994) Growth and photosynthesis of Pinus sylvestris at its altitudinal limit in Scotland. J Ecol 82:297–306

    Article  Google Scholar 

  • Jobbagy EG, Jackson RB (2000) Global controls of forest line elevation in the northern and southern hemisphere. Glob Ecol Biogeogr 9:253–268

    Article  Google Scholar 

  • Körner C (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115:445–459

    Article  Google Scholar 

  • Körner C (2003a) Alpine plant life. Springer, Berlin

    Book  Google Scholar 

  • Körner C (2003b) Carbon limitation in trees. J Ecol 91:4–17

    Article  Google Scholar 

  • Körner C (2007) The use of “altitude” in ecological research. Trends Ecol Evol 22:569–574

    Article  PubMed  Google Scholar 

  • Kramer PJ, Kozlowski TT (1979) Physiology of woody plants. Academic Press, Orlando

    Google Scholar 

  • Loehle C (1998) Height growth rate tradeoffs determine northern and southern range limits for trees. J Biogeogr 25:735–742

    Article  Google Scholar 

  • Luebert F, Pliscoff P (2006) Sinopsis bioclimática y vegetacional de Chile. Editorial Universitaria, Santiago

    Google Scholar 

  • MacArthur RH (1972) Geographical ecology: patterns in the distribution of species. Harper & Row, New York

    Google Scholar 

  • Moen J, Cairns DM, Lafon CW (2008) Factors structuring the treeline ecotone in Fennoscandia. Plant Ecol Divers 1:77–87

    Article  Google Scholar 

  • Molina-Montenegro MA (2008) Variación de la pubescencia foliar en plantas y sus implicancias funcionales a lo largo de gradientes altitudinales. Ecosistemas 17:146–154

    Google Scholar 

  • Molina-Montenegro MA, Cavieres LA (2010) Altitudinal variation of morpho-physiological traits in two high-andean plant species and its effects against the photoinhibition. Gayana Botánica 67:1–11

    Article  Google Scholar 

  • Molina-Montenegro MA, Ávila P, Hurtado R, Valdivia AI, Gianoli E (2006) Leaf trichome density may explain herbivory pattern of Actinote sp. (Lepidoptera: Acraeidae) on Liabum mandonii (Asteraceae) in a montane humid forest (Nor Yungas, Bolivia). Acta Oecologica 30:147–150

    Article  Google Scholar 

  • Newsted WJ, Chibbar RN, Georges F (1991) Effect of low temperature stress on the expression on sucrose synthase in spring and winter wheat plants. Development of monoclonal antibody against wheat germ sucrose synthase. Biochem Cell Biol 69:36–41

    Article  PubMed  CAS  Google Scholar 

  • Normand S, Treier UA, Randin C, Vittoz P, Guisan A, Svenning J-C (2009) Importance of abiotic stress as a range-limit determinant for European plants: insights from species responses to climatic gradients. Glob Ecol Biogeogr 18:437–449

    Article  Google Scholar 

  • Piper F, Cavieres LA, Reyes M, Corcuera LJ (2006) Carbon sink limitation and frost tolerance control performance of the tree Kageneckia angustifolia D. Don (Rosaceae) at the treeline in central Chile. Plant Ecol 185:29–39

    Article  Google Scholar 

  • Rada F, Azócar A, Briceño B, González J, García-Núñez C (1996) Carbon and water balance in Polylepis sericea, a tropical treeline species. Trees 10:218–222

    Google Scholar 

  • Roe JH (1934) A colorimetric method for the determination of fructose in blood and urine. J Biol Chem 107:15–22

    CAS  Google Scholar 

  • Saavedra N (1988) Sistema atmosférico: El clima. Caracterización de los principales componentes del súper sistema ambiental de la hoya hidrográfica del río Biobío. Universidad de Concepción, Concepción

    Google Scholar 

  • Sakai A, Larcher W (1987) Frost survival of plants: responses and adaptation to freezing stress. Springer-Verlag, Berlin

    Google Scholar 

  • Santarius KA (1982) The mechanism of cryoprotection of biomembrane systems by carbohydrates. In: Li DA, Sakai A (eds) Plant cold hardiness and freezing stress: mechanisms and crop implications. Academic Press, New York, pp 475–486

    Google Scholar 

  • Shi P, Körner C, Hoch G (2008) A test of the growth-limitation theory for alpine tree line formation in evergreen and deciduous taxa of the eastern Himalayas. Funct Ecol 22:213–220

    Article  Google Scholar 

  • Sierra-Almeida A, Cavieres LA, Bravo LA (2009) Freezing resistance varies within the growing season and with elevation in high-Andean species of central Chile. New Phytol 182:461–469

    Article  PubMed  Google Scholar 

  • Stevens GC, Fox JF (1991) The causes of treeline. Annu Rev Ecol Syst 22:177–191

    Article  Google Scholar 

  • Tschaplinski TJ, Blake TJ (1994) Carbohydrates mobilization following shoot defoliation and decapitation in hybrid poplar. Tree Physiol 14:141–151

    PubMed  CAS  Google Scholar 

  • Uemura M, Joseph RA, Steponkus PL (1995) Cold acclimation of Arabidopsis. Effect on plasma membrane lipid composition and freeze-induced lesions. Plant Physiol 109:15–30

    PubMed  CAS  Google Scholar 

  • Wanner L, Junttila O (1999) Cold-induced freezing tolerance in Arabidopsis. Plant Physiol 120:391–400

    Article  PubMed  CAS  Google Scholar 

  • Wardle P (2002) Vegetation of New Zealand. Blackburn Press, New Jersey

    Google Scholar 

  • Wieser G (1997) Carbon dioxide gas exchange of cembran pine (Pinus cembra) at the alpine timberline during winter. Tree Physiol 17:473–477

    PubMed  Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Prentice-Hall, Upper Saddle River

    Google Scholar 

Download references

Acknowledgments

The authors thank Bernardo Broitman, Chris Lusk, Frida Piper and Lohengrin A. Cavieres for their helpful comments on the manuscript. They also thank Valeria Neira for the assistance in the laboratory. Additionally, the authors also thank Raúl Briones and Renato Celis for plants collecting. This article forms part of the research activities of the Center of Biotechnology for the Development in Arid Zones (BIOTECZA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco A. Molina-Montenegro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molina-Montenegro, M.A., Gallardo-Cerda, J., Flores, T.S.M. et al. The trade-off between cold resistance and growth determines the Nothofagus pumilio treeline. Plant Ecol 213, 133–142 (2012). https://doi.org/10.1007/s11258-011-9964-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-011-9964-5

Keywords

Navigation