Skip to main content

Advertisement

Log in

The influence of light and nutrient availability on herb layer species richness in oak-dominated forests in central Bohemia

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

In this study, we examined to what extent the internal site factors (light and soil conditions) are responsible for herb layer diversity in oak-dominated forest stands growing on different substrates in central Bohemia (Czech Republic). We collected data on herb layer diversity, light and nutrient availability at nine oak stands, representing the range of environmental variability for these types of forests in the region. We found that species richness increased with light availability, but only if the site occupied predominantly by fast-colonizing species was excluded from the analysis (P < 0.05). Species richness correlated positively with soil pH and negatively with nitrogen (N) concentration in humus (P < 0.05). The highest species richness was found at sites with not only low N soil concentration, but also simultaneously with high phosphorus (P) soil concentration. Despite this finding, however, herb layer diversity is evidently threatened much more in P-rich soils than in P-poor soils. It seems that the enhancement of N in an ecosystem due to litter accumulation and N deposition generally leads to only a minor increase in N availability at P-poor sites, but a considerable increase at P-rich sites. Therefore, species richness can be exceptionally high at P-rich sites, but only under conditions of strong N limitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bobbink R, Hornung M, Roelofs JGM (1998) The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. J Ecol 86:717–738. doi:10.1046/j.1365-2745.1998.8650717.x

    Article  CAS  Google Scholar 

  • Boeye D, Verhagen B, Van Haesebroeck V, Verheyen RF (1997) Nutrient limitation in species-rich lowland fens. J Veg Sci 8:415–424. doi:10.2307/3237333

    Article  Google Scholar 

  • Borchsenius F, Nielsen PK, Lawesson JE (2004) Vegetation structure and diversity of an ancient temperate deciduous forest in SW Denmark. Plant Ecol 175:121–135. doi:10.1023/B:VEGE.0000048095.29961.c5

    Article  Google Scholar 

  • Brunet J, Falkengren-Grerup U, Rühling I, Tyler G (1997) Regional differences in floristic change in South Swedish oak forests as related to soil chemistry and land use. J Veg Sci 8:329–336. doi:10.2307/3237321

    Article  Google Scholar 

  • De Keersmaeker L, Martens L, Verheyen K, Hermy M, De Schrijver A, Lust N (2004) Impact of soil fertility and insolation on diversity of herbaceous woodland species colonizing afforestations in Muizen forest (Belgium). For Ecol Manag 188:291–304

    Article  Google Scholar 

  • Diekmann M (1996) Ecological behaviour of deciduous hardwood trees in Boreo-nemoral Sweden in relation to light and soil conditions. For Ecol Manag 86:1–14

    Article  Google Scholar 

  • Diekmann M, Brunet J, Rühling A, Falkengren-Grerup U (1999) Effects of nitrogen deposition: results of a temporal-spatial analysis of deciduous forests in south Sweden. Plant Biol 48:471–481. doi:10.1111/j.1438-8677.1999.tb00730.x

    Article  Google Scholar 

  • Domin K (1904) České středohoří. Fytogeografická studie. Královská česká společnost nauk 16 (in Czech)

  • Dumortier M, Butaye J, Jacquemyn H, Van Camp N, Lust N, Hermy M (2002) Predicting vascular plant species richness of fragmented forests in agricultural landscapes in central Belgium. For Ecol Manag 158:85–102

    Article  Google Scholar 

  • Dzwonko Z, Gawroński S (2002) Effect of litter removal on species richness and acidification of a mixed oak-pine woodland. Biol Conserv 106:389–398. doi:10.1016/S0006-3207(01)00266-X

    Article  Google Scholar 

  • Elemans M (2004) Light, nutrients and the growth of herbaceous forest species. Acta Oecol 26:197–202. doi:10.1016/j.actao.2004.05.003

    Article  Google Scholar 

  • Emborg J, Christensen M, Heilmann-Clausen J (2000) The structural dynamics of Suserup Skov, a near-natural temperate deciduous forest in Denmark. For Ecol Manag 126:173–189

    Article  Google Scholar 

  • Falkengren-Grerup U, Diekmann M (2003) Use of a gradient of N-deposition to calculate effect-related soil and vegetation measures in deciduous forests. For Ecol Manag 180:113–124

    Article  Google Scholar 

  • Falkengren-Grerup U, Schöttelndreier M (2004) Vascular plants as indicators of nitrogen enrichment in soils. Plant Ecol 172:51–62. doi:10.1023/B:VEGE.0000026033.43070.e9

    Article  Google Scholar 

  • Finegan B (1984) Forest succession. Nature 312:109–114. doi:10.1038/312109a0

    Article  Google Scholar 

  • Graae BJ, Sunde PB, Fritzboger B (2003) Vegetation and soil differences in ancient opposed to new forests. For Ecol Manag 177:179–190

    Article  Google Scholar 

  • Güsewell S (2004) N:P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266. doi:10.1111/j.1469-8137.2004.01192.x

    Article  Google Scholar 

  • Güsewell S, Koerselman W, Verhoeven JTA (2003) Biomass N:P ratio as indicators of nutrient limitation for plant populations in wetlands. Ecol Appl 13:372–384. doi:10.1890/1051-0761(2003)013[0372:BNRAIO]2.0.CO;2

    Article  Google Scholar 

  • Hermy M, Honnay O, Firbank L, Grashof-Bokdam C, Lawesson JE (1999) An ecological comparison between ancient and other forest plant species of Europe, and the implications for forest conservation. Biol Conserv 91:9–22. doi:10.1016/S0006-3207(99)00045-2

    Article  Google Scholar 

  • Hicks WK, Leith ID, Woodin SJ, Fowler D (2000) Can the foliar nitrogen concentration of upland vegetation be used for predicting atmospheric nitrogen deposition? Evidence from field surveys. Environ Pollut 107:367–376. doi:10.1016/S0269-7491(99)00166-9

    Article  PubMed  CAS  Google Scholar 

  • Hintze JL (2001) NCSS—statistical system for windows. Kaysville

  • Hipps NA, Davies MJ, Dodds P, Buckley GP (2005) The effects of phosphorus nutrition and soil pH on the growth of some ancient woodland indicator plants and their interaction with competitor species. Plant Soil 271:131–141. doi:10.1007/s11104-004-2266-0

    Article  CAS  Google Scholar 

  • Hoffmann A (2007) Vegetation and flora of the Velká hora Hill (Bohemian Karst)—present state and analysis of changes. Bohem Centr 28:49–116

    Google Scholar 

  • Hofmeister J, Mihaljevič M, Hošek J, Sádlo J (2002) Eutrophication of deciduous forests in the Bohemian Karst (Czech Republic): the role of nitrogen and phosphorus. For Ecol Manag 169:213–230

    Article  Google Scholar 

  • Hofmeister J, Mihaljevič M, Hošek J (2004) The spread of ash (Fraxinus excelsior) in some European oak forests: an effect of nitrogen deposition or successional change? For Ecol Manag 203:35–47

    Article  Google Scholar 

  • Honnay O, Hermy M, Coppin P (1999) Impact of habitat quality on forest plant species colonization. For Ecol Manag 115:157–170

    Article  Google Scholar 

  • Honnay O, Bossuyt B, Verheyen K, Butaye J, Jacquemyn H, Hermy M (2002) Ecological perspectives for the restoration of plant communities in European temperate forests. Biodivers Conserv 11:213–242. doi:10.1023/A:1014531011060

    Article  Google Scholar 

  • Honnay O, Jacquemyn H, Bossuyt B, Hermy M (2005) Forest fragmentation effects on patch occupancy and population viability of herbaceous plant species. New Phytol 166:723–736. doi:10.1111/j.1469-8137.2005.01352.x

    Article  PubMed  Google Scholar 

  • Janssens F, Peeters A, Tallowin JRB, Bakker JP, Bekker RM, Fillat F, Oomes MJM (1998) Relationship between soil chemical factors and grassland diversity. Plant Soil 202:69–78. doi:10.1023/A:1004389614865

    Article  CAS  Google Scholar 

  • Koerselman W, Melueman AFM (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33:1441–1450. doi:10.2307/2404783

    Article  Google Scholar 

  • Kolb A, Diekmann M (2004) Effects of environment, habitat configuration and forest continuity on the distribution of forest plant species. J Veg Sci 15:199–208. doi:10.1658/1100-9233(2004)015[0199:EOEHCA]2.0.CO;2

    Article  Google Scholar 

  • Kolbek J (1983) Die Vegetation des Doppelberges Svinky im Südteil des Gebirges České středohoří (Böhmisches Mittelgebirge). Preslia 55:325–341

    Google Scholar 

  • Kubát K, Hrouda L, Chrtek jun J, Kaplan Z, Kirschner J, Štěpánek J (eds) (2002) Klíč ke květeně České republiky [Key to the flora of the Czech Republic]. Academia, Praha (in Czech)

  • Kwiatkowka AJ (1994) Changes in the species richness, spatial pattern and species frequency associated with the decline of oak forest. Vegetatio 112:171–180. doi:10.1007/BF00044691

    Article  Google Scholar 

  • Lindenmayer DB, Fischer J (2006) Habitat fragmentation and landscape change. An ecological and conservation synthesis. Island Press, Washington, DC

    Google Scholar 

  • Londo G (1976) The decimal scale for releves of permanent quadrats. Vegetatio 33:61–64. doi:10.1007/BF00055300

    Article  Google Scholar 

  • Malmer N, Lindgren L, Persson S (1978) Vegetation succession in a south Swedish deciduous wood. Vegetatio 36:17–29. doi:10.1007/BF01324768

    Article  Google Scholar 

  • Mařan B (1947) Vliv porostů a reliéfu na rendziny Karlštejnska. Sborník výzkumných ústavů lesnických. Ministerstvo zemědělství republiky Československé, Praha (in Czech)

    Google Scholar 

  • Mehlich A (1984) Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Commun Soil Sci Plant Anal 15:1409–1416. doi:10.1080/00103628409367568

    Article  CAS  Google Scholar 

  • Nassery H (1970) Phosphate absorption by plants from habitats of different phosphate status. II: absorption and incorporation of phosphate by intact plants. New Phytol 69:197–203. doi:10.1111/j.1469-8137.1970.tb04063.x

    Article  CAS  Google Scholar 

  • Neuhäuslová Z (1999) Změny bylinného patra v lesních společenstvech. Zprávy České botanické společnosti 17:37–46 (in Czech)

    Google Scholar 

  • Olde Venterink H, Wassen MJ, Verkoost AWM, De Ruiter PC (2003) Species richness-productivity patterns digger between N-, P-, and K- limited wetlands. Ecology 84:2191–2199. doi:10.1890/01-0639

    Article  Google Scholar 

  • Pastor J, Aber JD, McClaugherty CA, Melillo JM (1984) Aboveground production and N and P cycling along a nitrogen mineralization gradient on Blackhawk Island, Wisconsin. Ecology 65:256–268. doi:10.2307/1939478

    Article  CAS  Google Scholar 

  • Peterken GF (1977) Habitat conservation priorities in British and European woodlands. Biol Conserv 11:223–236. doi:10.1016/0006-3207(77)90006-4

    Article  Google Scholar 

  • Peterken GF, Game M (1984) Historical factors affecting the numbers and distribution of vascular plant species in the woodlands of the Central Linconshire. J Ecol 72:155–182. doi:10.2307/2260011

    Article  Google Scholar 

  • Pigott CD (1971) Analysis of the response of Urtica dioica to phosphate. New Phytol 70:953–966. doi:10.1111/j.1469-8137.1971.tb02597.x

    Article  CAS  Google Scholar 

  • Pigott CD, Taylor K (1964) The distribution of some woodland herbs in relation to the supply of nitrogen and phosphorus in the soil. J Ecol 52(Suppl):175–185

    Google Scholar 

  • Pitcairn CER, Leith ID, Fowler D, Hargreaves KJ, Moghaddam M, Kennedy VH, Granat L (2001) Foliar nitrogen as an indicator of nitrogen deposition and critical loads exceedance on a European scale. Water Air Soil Pollut 130:1037–1042. doi:10.1023/A:1013908312369

    Article  Google Scholar 

  • Pitcairn CER, Fowler D, Leith ID, Sheppard LJ, Sutton MA, Kennedy V, Okello E (2003) Bioindicators of enhanced nitrogen deposition. Environ Pollut 126:353–361. doi:10.1016/S0269-7491(03)00248-3

    Article  PubMed  CAS  Google Scholar 

  • Pokorný P (2005) Role of man in the development of Holocene vegetation in central Bohemia. Preslia 77:113–128

    Google Scholar 

  • Pontailler JY, Faille A, Lemée G (1997) Stroms drive successional dynamics in natural forests: a case study in Fontainebleau forest (France). For Ecol Manag 98:1–15

    Article  Google Scholar 

  • Stefan K, Fürst A, Hacker R, Bartels U (1997) Forest foliar condition in Europe—results of large-scale foliar chemistry surveys. EC, UN/ECE, Brussels

    Google Scholar 

  • Strandberg B, Kristiansen SM, Tybirk K (2005) Dynamic oak-scrub to forest succession: effects of management on understorey vegetation, humus forms and soils. For Ecol Manag 211:318–328

    Article  Google Scholar 

  • Ter Steege H (1996) Winphot 5: a program to analyze vegetation indices, light and light quality from hemispherical photographs. Tropenbos Guyana Reports 95-2, Georgetown, Guyana

  • Tessier JT, Raynal DJ (2003) Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. J Appl Ecol 40:523–534. doi:10.1046/j.1365-2664.2003.00820.x

    Article  CAS  Google Scholar 

  • Tybirk K, Strandberg B (1999) Oak forest development as a result of historical land-use patterns and present nitrogen deposition. For Ecol Manag 114:97–106

    Article  Google Scholar 

  • Van Calster H, Baeten L, De Schrijver A, De Keersmaeker L, Rogister JE, Verheyen K, Hermy M (2007) Management driven changes (1967–2005) in soil acidity and the understorey plant community following conversion of a coppice-with-standards forest. For Ecol Manag 241:258–271

    Article  Google Scholar 

  • Vaníček K (1994) Description of the field of total solar radiation in the Czech Republic, 1984–1993. CHMI, Praha

    Google Scholar 

  • Vellend M, Verheyen K, Jacquemyn H, Kolb A, Van Calster H, Peterken G, Hermy M (2006) Extinction debt of forest plants persists for more than a century following habitat fragmentation. Ecology 87:542–548. doi:10.1890/05-1182

    Article  PubMed  Google Scholar 

  • Vellend M, Verheyen K, Flinn KM, Jacquemyn H, Kolb A, Van Calster H, Peterken G, Graae BJ, Bellemare J, Honnay O, Brunet J, Wulf M, Gerhardt F, Hermy M (2007) Homogenization of forest plant communities and weakening of species-environment relationships via agricultural land use. J Ecol 95:565–573. doi:10.1111/j.1365-2745.2007.01233.x

    Article  Google Scholar 

  • Verheyen K, Bossuyt B, Hermy M, Tack G (1999) The land use history (1278–1990) of a mixed hardwood forest in western Belgium and its relationship with chemical soil characteristics. J Biogeogr 26:1115–1128. doi:10.1046/j.1365-2699.1999.00340.x

    Article  Google Scholar 

  • Verheyen K, Honnay O, Motzkin G, Hermy M, Foster DR (2003) Response of forest plant species to land-use change: a life-history trait-based approach. J Ecol 91:563–577. doi:10.1046/j.1365-2745.2003.00789.x

    Article  Google Scholar 

  • Verheyen K, Fastenaekels I, Vellend M, De Keersmaeker L, Hermy M (2006) Landscape factors and regional differences in recovery rates of herb layer richness in Flanders (Belgium). Landscape Ecol 21:1109–1118. doi:10.1007/s10980-006-7247-7

    Article  Google Scholar 

  • von Oheimb G, Brunet J (2007) Dalby Söderskog revisited: long-term vegetation changes in a south Swedish deciduous forest. Acta Oecol 31:229–242. doi:10.1016/j.actao.2006.12.001

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Tenčík, T. Svoboda, P. Blahník, K. Hošková, M. Půlkrábková, A. Zajíčková, J. Procházka and other colleagues for field assistance and technical support. The laboratory of the Czech Geological Survey analyzed all samples of soil and plant biomass. Thank to D. Hardekopf for revision of English and M. Beran for comments of used statistics. This research was financially supported by a Ministry of Environment of the Czech Republic (grant project VaV 640/11/03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeňýk Hofmeister.

Appendices

Appendix 1

See Appendix Table 4.

Table 4 Classification of three groups of plant species (AFS ancient forest species, FCS fast-colonizing species and other species) at study sites according to list by Honnay et al. (2002) and Verheyen et al. (2003), respectively

Appendix 2

See Appendix Table 5.

Table 5 Soil condition, weight of the aboveground herb layer biomass, nutrient concentration in the aboveground biomass of herb layer and oak leaves, and soil and light conditions at nine sites in three regions with different geological substrates in central Bohemia (mean ± SD)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofmeister, J., Hošek, J., Modrý, M. et al. The influence of light and nutrient availability on herb layer species richness in oak-dominated forests in central Bohemia. Plant Ecol 205, 57–75 (2009). https://doi.org/10.1007/s11258-009-9598-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-009-9598-z

Keywords

Navigation