Skip to main content

Advertisement

Log in

Native cover crops suppress exotic annuals and favor native perennials in a greenhouse competition experiment

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

In a greenhouse experiment, we examined the effectiveness of four native cover crops for controlling four exotic, invasive species and increasing success of four western North American grassland species. Planting the annual cover crops, annual ragweed (Ambrosia artemisiifolia) and common sunflower (Helianthus annuus), reduced the biomass of the exotic species cheatgrass (Bromus tectorum), Japanese brome (Bromus japonicus), Canada thistle (Cirsium arvense), and whitetop (Cardaria draba). The annual cover crops also reduced the desired species biomass in competition with the perennial exotics, but either increased or did not affect the desired species biomass in competition with the annual exotics. Planting the perennial cover crops, Canada goldenrod (Solidago canadensis) and littleleaf pussytoes (Antennaria microphylla), rarely inhibited exotic species, but did increase the desired species biomass. Field experiments are needed to test the cover crops under more ecologically relevant conditions, but our results suggested that the annual cover crops may be effective for controlling invasive annuals and for facilitating native perennials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Azania A, Azania CAM, Alves P et al (2003) Allelopathic plants. 7. Sunflower (Helianthus annuus L.). Allelopath J 11:1–20

    Google Scholar 

  • Barkosky RR, Butler JL, Einhellig FA (1999) Mechanisms of hydroquinone-induced growth reduction in leafy spurge. J Chem Ecol 25:1611–1621. doi:10.1023/A:1020892917434

    Article  CAS  Google Scholar 

  • Barkosky RR, Einhellig FA, Butler JL (2000) Caffeic acid-induced changes in plant-water relationships and photosynthesis in leafy spurge Euphorbia esula. J Chem Ecol 26:2095–2109. doi:10.1023/A:1005564315131

    Article  CAS  Google Scholar 

  • Bazzaz FA (1996) Plants in changing environments. Linking physiological, population, and community ecology. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Beres I, Kazinczi G (2000) Allelopathic effects of shoot extracts and residues of weeds on field crops. Allelopath J 7:93–98

    Google Scholar 

  • Beres I, Kazinczi G, Narwal SS (2002) Allelopathic plants. 4. Common ragweed (Ambrosia elatior L. Syn A. artemisiifolia). Allelopath J 9:27–34

    Google Scholar 

  • Blackshaw RE, O’Donovan JT, Harker KN et al (2006) Reduced herbicide doses in field crops: a review. Weed Biol Manag 6:10–17. doi:10.1111/j.1445-6664.2006.00190.x

    Article  CAS  Google Scholar 

  • Bruckner DJ (1998) The allelopathic effect of ragweed (Ambrosia artemisiifolia L.) on the germination of cultivated plants. Novenytermeles 47:635–644

    Google Scholar 

  • Bruckner DJ, Lepossa A, Herpai Z (2003) Inhibitory effect of ragweed (Ambrosia artemisiifolia L.)—inflorescence extract on the germination of Amaranthus hypochondriacus L. and growth of two soil algae. Chemosphere 51:515–519. doi:10.1016/S0045-6535(02)00790-7

    Article  PubMed  CAS  Google Scholar 

  • Butcko VM, Jensen RJ (2002) Evidence of tissue-specific allelopathic activity in Euthamia graminifolia and Solidago canadensis (Asteraceae). Am Midl Nat 148:253–262. doi:10.1674/0003-0031(2002)148[0253:EOTSAA]2.0.CO;2

    Article  Google Scholar 

  • Callaway RM (1995) Positive interactions among plants. Bot Rev 61:306–349. doi:10.1007/BF02912621

    Article  Google Scholar 

  • Callaway RM, Ridenour WM (2004) Novel weapons: invasive success and the evolution of increased competitive ability. Front Ecol Environ 2:436–443

    Article  Google Scholar 

  • Daehler CC (2003) Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annu Rev Ecol Evol Syst 34:183–211. doi:10.1146/annurev.ecolsys.34.011802.132403

    Article  Google Scholar 

  • De Haan RL, Wyse DL, Ehlke NJ et al (1994) Simulation of spring-seeded smother plants for weed control in corn (Zea mays). Weed Sci 42:35–43

    Google Scholar 

  • Faure N, Serieys H, Berville A (2002) Potential gene flow from cultivated sunflower to volunteer, wild Helianthus species in Europe. Agric Ecosyst Environ 89:183–190. doi:10.1016/S0167-8809(01)00338-3

    Article  Google Scholar 

  • Fisher RF, Woods RA, Glavicic MR (1978) Allelopathic effects of goldenrod and aster on young sugar maple. Can J Res 8:1–9. doi:10.1139/x78-001

    Article  CAS  Google Scholar 

  • Fistarol GO, Legrand C, Graneli E (2005) Allelopathic effect on a nutrient-limited phytoplankton species. Aquat Microb Ecol 41:153–161. doi:10.3354/ame041153

    Article  Google Scholar 

  • Fitter A (2003) Making allelopathy respectable. Science 301:1337–1338. doi:10.1126/science.1089291

    Article  PubMed  CAS  Google Scholar 

  • Garnier E (1992) Growth analysis of congeneric annual and perennial grass species. J Ecol 80:665–675. doi:10.2307/2260858

    Article  Google Scholar 

  • Gniazdowska A, Oracz K, Bogatek R (2007) Phytotoxic effects of sunflower (Helianthus annuus L.) leaf extracts on germinating mustard (Sinapis alba L.) seeds. Allelopath J 19:215–226

    Google Scholar 

  • Goldberg DE, Scheiner SM (2001) ANOVA and ANCOVA: field competition experiments. In: Scheiner SM, Gurevitch J (eds) Design and analysis of ecological experiments. Oxford University Press, Oxford, pp 77–98

    Google Scholar 

  • Graneli E, Johansson N (2003) Increase in the production of allelopathic substances by Prymnesium parvum cells grown under N- or P-deficient conditions. Harmful Algae 2:135–145. doi:10.1016/S1568-9883(03)00006-4

    Article  CAS  Google Scholar 

  • Grime JP (1974) Vegetation classification by reference to strategies. Nature 250:26–31. doi:10.1038/250026a0

    Article  Google Scholar 

  • Hanson PJ, Dixon RK (1985) Allelopathic inhibition of northern red oak by interrupted fern and goldenrod. In: Dawson JO, Majerus KA (eds) Fifth central hardwood forest conference. Dept. of Forestry, University of Illinois, Urbana-Champaign, pp 269–274

    Google Scholar 

  • Hoffman ML, Regnier EE, Cardina J (1993) Weed and corn (Zea mays) responses to a hairy vetch (Vicia villosa) cover crop. Weed Technol 7:594–599

    Google Scholar 

  • Hogan ME, Manners GD (1990) Allelopathy of small everlasting (Antennaria microphylla). Phytotoxicity to leafy spurge (Euphorbia esula) in tissue culture. J Chem Ecol 16:931–939. doi:10.1007/BF01016501

    Article  CAS  Google Scholar 

  • Inderjit, Callaway RM (2003) Experimental designs for the study of allelopathy. Plant Soil 256:1–11

    Article  CAS  Google Scholar 

  • Inderjit, Nilsen ET (2003) Bioassays and field studies for allelopathy in terrestrial plants: Progress and problems. Crit Rev Plant Sci 22:221–238

    Article  Google Scholar 

  • Irons SM, Burnside OC (1982) Competitive and allelopathic effects of sunflower (Helianthus annuus). Weed Sci 30:372–377

    Google Scholar 

  • Jackson JR, Willemsen RW (1976) Allelopathy in the first stages of secondary succession on the piedmont of New Jersey. Am J Bot 63:1015–1023. doi:10.2307/2441761

    Article  CAS  Google Scholar 

  • Landhausser SM, Stadt KJ, Lieffers VJ (1996) Screening for control of a forest weed: early competition between three replacement species and Calamagrostis canadensis or Picea glauca. J Appl Ecol 33:1517–1526. doi:10.2307/2404790

    Article  Google Scholar 

  • Lanini WT, Orloff SB, Vargas RN et al (1991) Oat companion crop seeding rate effect on alfalfa establishment, yield, and weed control. Agron J 83:330–333

    Article  Google Scholar 

  • Larson MM, Schwarz EL (1980) Allelopathic inhibition of black locust, red clover, and black alder by six common herbaceous species. For Sci 26:511–520

    Google Scholar 

  • Lau JA, Puliafico KP, Kopshever JA et al (2008) Inference of allelopathy is complicated by effects of activated carbon on plant growth. New Phytol 178:412–423. doi:10.1111/j.1469-8137.2007.02360.x

    Article  PubMed  CAS  Google Scholar 

  • Leather GR (1983) Sunflowers (Helianthus annuus) are allelopathic to weeds. Weed Sci 31:37–42

    Google Scholar 

  • Ledgard N, Davis M (2004) Restoration of mountain beech (Nothofagus solandri var. cliffortioides) forest after fire. N Z J Ecol 28:125–135

    Google Scholar 

  • Macias FA, Varela RM, Torres A et al (1998a) Heliespirone A. The first member of a novel family of bioactive sesquiterpenes. Tetrahedron Lett 39:427–430. doi:10.1016/S0040-4039(97)10538-X

    Article  CAS  Google Scholar 

  • Macias FA, Varela RM, Torres A et al (1998b) Allelopathic studies in cultivar, part 10—bioactive norsesquiterpenes from Helianthus annuus potential allelopathic activity. Phytochemistry 48:631–636. doi:10.1016/S0031-9422(97)00995-3

    Article  CAS  Google Scholar 

  • Macias FA, Lopez A, Varela RM et al (2008) Helikauranoside A, a new bioactive diterpene. J Chem Ecol 34:65–69. doi:10.1007/s10886-007-9400-4

    Article  PubMed  CAS  Google Scholar 

  • Manners GD, Galitz DS (1986) Allelopathy of small everlasting (Antennaria microphylla): identification of constituents phytotoxic to leafy spurge (Euphorbia esula). Weed Sci 34:8–12

    CAS  Google Scholar 

  • Maruthi V, Sankaran N (2001) Allelopathic effects of sunflower (Helianthus spp.)—a review. Agric Rev 22:57–60

    Google Scholar 

  • Morgan JP (1997) Plowing and seeding. In: Packard S, Mutel CF (eds) The tallgrass restoration handbook for prairies, savannas, and woodlands. Island Press, Washington, DC, pp 193–215

    Google Scholar 

  • Morris PJ, Parrish DJ (1992) Effects of sunflower residues and tillage on winter-wheat. Field Crops Res 29:317–327. doi:10.1016/0378-4290(92)90033-6

    Article  Google Scholar 

  • Muller B, Garnier E (1990) Components of relative growth rate and sensitivity to nitrogen availability in annual and perennial species of Bromus. Oecologia 84:513–518

    Google Scholar 

  • Ohno S, Tomita-Yokotani K, Kosemura S et al (2001) A species-selective allelopathic substance from germinating sunflower (Helianthus annuus L.) seeds. Phytochemistry 56:577–581. doi:10.1016/S0031-9422(00)00416-7

    Article  PubMed  CAS  Google Scholar 

  • Perry LG, Galatowitsch SM (2003) A test of two annual cover crops for controlling Phalaris arundinacea invasion in restored sedge meadow wetlands. Restor Ecol 11:297–307. doi:10.1046/j.1526-100X.2003.00174.x

    Article  Google Scholar 

  • Perry LG, Galatowitsch SM (2006) Light competition for invasive species control: a model of cover crop-weed competition and implications for Phalaris arundinacea control in sedge meadow wetlands. Euphytica 148:121–134. doi:10.1007/s10681-006-5946-4

    Article  Google Scholar 

  • Rabotnov A (1982) Importance of the evolutionary approach to the study of allelopathy. Sov J Ecol 12:127–130

    Google Scholar 

  • Ridenour WM, Callaway RM (2001) The relative importance of allelopathy in interference: the effects of an invasive weed on a native bunchgrass. Oecologia 126:444–450. doi:10.1007/s004420000533

    Article  Google Scholar 

  • Selleck GW (1972) Antibiotic effects of plants in laboratory and field. Weed Sci 20:189–194

    Google Scholar 

  • Sheley RL, Krueger-Mangold J (2003) Principles for restoring invasive plant-infested rangeland. Weed Sci 51:260–265. doi:10.1614/0043-1745(2003)051[0260:PFRIPI]2.0.CO;2

    Article  CAS  Google Scholar 

  • Sheley RL, Larson LL (1994) Comparative life history of cheatgrass and yellow starthistle—observation. J Range Manag 47:450–456. doi:10.2307/4002995

    Article  Google Scholar 

  • Sheley RL, Mangold JM, Anderson JL (2006) Potential for successional theory to guide restoration of invasive-plant-dominated rangeland. Ecol Monogr 76:365–379. doi:10.1890/0012-9615(2006)076[0365:PFSTTG]2.0.CO;2

    Article  Google Scholar 

  • Shetty KG, Jayachandran K, Quinones K et al (2007) Allelopathic effects of ragweed compound thiarubrine-A on Brazilian pepper. Allelopath J 20:371–378

    Google Scholar 

  • Shipley B, Meziane D (2002) The balanced-growth hypothesis and the allometry of leaf and root biomass allocation. Funct Ecol 16:326–331. doi:10.1046/j.1365-2435.2002.00626.x

    Article  Google Scholar 

  • Shirley S (1994) Restoring the tallgrass prairie. An illustrated manual for Iowa and the midwest. University of Iowa Press, Iowa City

    Google Scholar 

  • Singh HP, Batish DR, Kohli RK (2003) Allelopathic interactions and allelochemicals: new possibilities for sustainable weed management. Crit Rev Plant Sci 22:239–311. doi:10.1080/713610858

    Article  CAS  Google Scholar 

  • Sun BY, Tan JZ, Wan ZG et al (2006) Allelopathic effects of extracts from Solidago canadensis L. against seed germination and seedling growth of some plants. J Environ Sci (China) 18:304–309

    Google Scholar 

  • Sutherland S (2004) What makes a weed a weed: life history traits of native and exotic plants in the USA. Oecologia 141:24–39. doi:10.1007/s00442-004-1628-x

    Article  PubMed  Google Scholar 

  • Tsao R, Eto M (1996) Light-activated plant growth inhibitory activity of cis-dehydromatricaria ester, rose bengal and fluoren-9-one on lettuce (Lactuca sativa L.). Chemosphere 32:1307–1317. doi:10.1016/0045-6535(96)00042-2

    Article  CAS  Google Scholar 

  • Weber E (2001) Current and potential ranges of three exotic goldenrods (Solidago) in Europe. Conserv Biol 15:122–128. doi:10.1046/j.1523-1739.2001.99424.x

    Article  Google Scholar 

  • Wilson RE, Rice EL (1968) Allelopathy as expressed by Helianthus annuus and its role in old-field succession. Bull Torrey Bot Club 95:432–448. doi:10.2307/2483475

    Article  CAS  Google Scholar 

  • Yang RY, Mei LX, Tang JJ et al (2007) Allelopathic effects of invasive Solidago canadensis L. on germination and growth of native Chinese plant species. Allelopath J 19:241–247

    Google Scholar 

  • Zhang Q, Yao LJ, Yang RY et al (2007) Potential allelopathic effects of an invasive species Solidago canadensis on the mycorrhizae of native plant species. Allelopath J 20:71–77

    CAS  Google Scholar 

Download references

Acknowledgements

The Wyoming Abandoned Coal Mine Land Research Program and USDOD-SERDP-SI1388 provided funding for this research. Two anonymous reviewers provided useful comments on earlier versions of the paper. Élan Alford, Lauren Alleman, Mátyás Csányi, Natasha Davis, Joshua Eldridge, Lilly Hines, Timothy Hoelzle, Erica Ontl, and Julie Rieder assisted with transplanting, harvesting, and daily maintenance of the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark W. Paschke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perry, L.G., Cronin, S.A. & Paschke, M.W. Native cover crops suppress exotic annuals and favor native perennials in a greenhouse competition experiment. Plant Ecol 204, 247–259 (2009). https://doi.org/10.1007/s11258-009-9588-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-009-9588-1

Keywords

Navigation