Skip to main content

Advertisement

Log in

Phosphodiesterase1 inhibitor “Vinpocetine” ameliorates the inflammation, apoptosis and oxidative stress induced by cyclophosphamide in urinary bladder: an experimental study

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Background

Hemorrhagic cystitis often develops in patients treated with cyclophosphamide (CP). Vincamine (vinca alkaloid) is the source of the synthetic derivative vinpocetine (Vinpo). Worldwide, Vinpo is used as a cerebroprotective drug. As it has anti-oxidant, anti-thrombotic and anti-inflammatory effects but the power of Vinpo to prevent CP induced cystitis has not been studied.

Aim of study

This research was planned to explore the effect of Vinpo (10–30 mg/kg, orally) administered 1 or 4 h before inducing cystitis by CP injection (300 mg/kg, i.p.) on the urinary bladder of mice.

Results

Administration of Vinpo 30 mg/kg, 4 h before CP injection ameliorated inflammatory markers. It reduced inducible nitric oxide synthase (iNOS), tumor necrosis factor- α (TNF-α), and BCL2 Associated X (Bax) expression in the bladder and increased the total antioxidant capacity level. Histological examination of the bladder has further supported these results. The present study suggests a protective effect of Vinpo (30 mg/kg, 4 h before CP injection) against CP-induced bladder inflammation.

Conclusion

This proposes that Vinpo 30 mg/kg may become a promising pharmacological drug to prevent urinary adverse effects in patients treated with chemotherapy using CP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All relevant data are available from the corresponding author upon request.

References

  1. Adams E, Green J, Clark A, Youngson J (1999) Comparison of different scoring systems for immunohistochemical staining. J Clin Pathol 52(1):75–77

    Article  CAS  Google Scholar 

  2. Auge C, Chene G, Dubourdeau M, Desoubzdanne D, Corman B, Palea S, Lluel P, Vergnolle N, Coelho AM (2013) Relevance of the cyclophosphamide-induced cystitis model for pharmacological studies targeting inflammation and pain of the bladder. Eur J Pharmacol 707(1–3):32–40

    Article  CAS  Google Scholar 

  3. Barut EN, Engin S, Barut B, Kaya C, Kerimoglu G, Ozel A, Kadioglu M (2019) Uroprotective effect of ambroxol in cyclophosphamide-induced cystitis in mice. Int Urol Nephrol 51(5):803–810

    Article  CAS  Google Scholar 

  4. Cai Y, Knight WE, Guo S, Li JD, Knight PA, Yan C (2012) Vinpocetine suppresses pathological vascular remodeling by inhibiting vascular smooth muscle cell proliferation and migration. J Pharmacol Exp Ther 343(2):479–488

    Article  CAS  Google Scholar 

  5. Cai Y, Li JD, Yan C (2013) Vinpocetine attenuates lipid accumulation and atherosclerosis formation. Biochem Biophys Res Commun 434(3):439–443

    Article  CAS  Google Scholar 

  6. Cavallasca JA, Costa CA, MaliandiMdel R, Contini LE, Fernandez de Carrera E, Musuruana JL (2015) Severe infections in patients with autoimmune diseases treated with cyclophosphamide. Reumatol Clin 11(4):221–223. https://doi.org/10.1016/j.reumae.2014.11.002

    Article  Google Scholar 

  7. Colvin OM (1999) An overview of cyclophosphamide development and clinical applications. Curr Pharm Des 5(8):555–560

    CAS  Google Scholar 

  8. Cuzzocrea S, Reiter RJ (2001) Pharmacological action of melatonin in shock, inflammation and ischemia/reperfusion injury. Eur J Pharmacol 426(1–2):1–10

    Article  CAS  Google Scholar 

  9. Dan D, Fischer R, Adler S, Förger F, Villiger PM (2014) Cyclophosphamide: as bad as its reputation? Long-term single centre experience of cyclophosphamide side effects in the treatment of systemic autoimmune diseases. Swiss Med Wkly 144:w14030

    Google Scholar 

  10. De Groat WC, Yoshimura N (2001) Pharmacology of the lower urinary tract. Annu Rev Pharmacol Toxicol 41:691–721. https://doi.org/10.1146/annurev.pharmtox.41.1.691

    Article  Google Scholar 

  11. De Jongh R, van Koeveringe GA, van Kerrebroeck PE, MarkerinkvanIttersum M, de Vente J, Gillespie JI (2007) The effects of exogenous prostaglandins and the identification of constitutive cyclooxygenase I and II immunoreactivity in the normal guinea pig bladder. BJU Int 100(2):419–429. https://doi.org/10.1111/j.1464-410X.2007.07011.x

    Article  CAS  Google Scholar 

  12. Elnfarawy AA, Nashy AE, Abozaid AM, Komber IF, Elweshahy RH, Abdelrahman RS (2020) Vinpocetine attenuates thioacetamide-induced liver fibrosis in rats. Hum Exp Toxicol 40(2):355–368

    Article  Google Scholar 

  13. Emadi A, Jones RJ, Brodsky RA (2009) Cyclophosphamide and cancer: golden anniversary. Nat Rev Clin Oncol 6(11):638–647

    Article  CAS  Google Scholar 

  14. Fattori V, Borghi SM, Guazelli CFS, Giroldo AC, Crespigio J, Bussmann AJC, Coelho-Silva L, Ludwig NG, Mazzuco TL, Casagrande R, Verri WA Jr (2017) Vinpocetine reduces diclofenac-induced acute kidney injury through inhibition of oxidative stress, apoptosis, cytokine production, and NF-κB activation in mice. Pharmacol Res 120:10–22

    Article  CAS  Google Scholar 

  15. Guesdon J-L, Ternynck T, Avrameas S (1979) The use of avidin-biotin interaction in immunoenzymatic techniques. J Histochem Cytochem 27(8):1131–1139

    Article  CAS  Google Scholar 

  16. Habib SA, Abdelrahman RS, Abdel Rahim M, Suddek GM (2020) Anti-apoptotic effect of vinpocetine on cisplatin-induced hepatotoxicity in mice: the role of Annexin-V, Caspase-3, and Bax. J Biochem Mol Toxicol 34(10):e22555

    Article  CAS  Google Scholar 

  17. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Pharmaceuticals. Lyon (FR): International Agency for Research on Cancer; 2012. (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 100A.) CYCLOPHOSPHAMIDE. Available from: https://www.ncbi.nlm.nih.gov/books/NBK304336/

  18. Jeon KI, Xu X, Aizawa T, Lim JH, Jono H, Kwon DS, Abe J, Berk BC, Li JD, Yan C (2010) Vinpocetine inhibits NF-kappaB-dependent inflammation via an IKK-dependent but PDE-independent mechanism. Proc Natl Acad Sci U S A 107(21):9795–9800

    Article  CAS  Google Scholar 

  19. Jezernik K, Romih R, Mannherz HG, Koprivec D (2003) Immunohistochemical detection of apoptosis, proliferation and inducible nitric oxide synthase in rat urothelium damaged by cyclophosphamide treatment. Cell Biol Int 27(10):863–869

    Article  CAS  Google Scholar 

  20. Kim SH, Lee IC, Baek HS, Shin IS, Moon C, Bae CS, Kim SH, Kim JC, Kim HC (2014) Mechanism for the protective effect of diallyl disulfide against cyclophosphamide acute urotoxicity in rats. Food Chem Toxicol 64:110–118. https://doi.org/10.1016/j.fct.2013.11.023 (Epub 2013 Nov 27 PMID: 24291451)

    Article  CAS  Google Scholar 

  21. Koracevic D, Koracevic G, Djordjevic V, Andrejevic S, Cosic V (2001) Method for the measurement of antioxidant activity in human fluids. J Clin Pathol 54(5):356–361

    Article  CAS  Google Scholar 

  22. Korkmaz A, Topal T, Oter S (2007) Pathophysiological aspects of cyclophosphamide and ifosfamide induced hemorrhagic cystitis; implication of reactive oxygen and nitrogen species as well as PARP activation. Cell Biol Toxicol 23(5):303–312

    Article  CAS  Google Scholar 

  23. Lakics V, Karran EH, Boess FG (2010) Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues. Neuropharmacology 59(6):367–374

    Article  CAS  Google Scholar 

  24. Lugnier C (2006) Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther 109:366–398

    Article  CAS  Google Scholar 

  25. Medina AE (2010) Vinpocetine as a potent antiinflammatory agent. Proc Natl Acad Sci USA 107(22):9921–9922

    Article  CAS  Google Scholar 

  26. Mills KA, Chess-Williams R, McDermott C (2019) Novel insights into the mechanism of cyclophosphamide-induced bladder toxicity: chloroacetaldehyde’s contribution to urothelial dysfunction in vitro. Arch Toxicol 93(11):3291–3303

    Article  CAS  Google Scholar 

  27. Morley DJ, Hawley DM, Ulbright TM, Butler LG, Culp JS, Hodes ME (1987) Distribution of phosphodiesterase I in normal human tissues. J Histochem Cytochem 35(1):75–82

    Article  CAS  Google Scholar 

  28. Ogino MH, Tadi P (2021) Cyclophosphamide. Treasure Island (FL), StatPearls Publishing, StatPearls

    Google Scholar 

  29. Persson K, Poljakovic M, Johansson K, Larsson B (1999) Morphological and biochemical investigation of nitric oxide synthase and related enzymes in the rat and pig urothelium. J Histochem Cytochem 47(6):739–749

    Article  CAS  Google Scholar 

  30. Qiu Y, Kraft P, Craig EC, Liu X, Haynes-Johnson D (2001) Identification and functional study of phosphodiesterases in rat urinary bladder. Urol Res 29(6):388–392

    Article  CAS  Google Scholar 

  31. Qiu Y, Kraft P, Craig EC, Liu X, Haynes-Johnson D (2002) Cyclic nucleotide phosphodiesterases in rabbit detrusor smooth muscle. Urology 59(1):145–149

    Article  Google Scholar 

  32. Radi R (2004) Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci U S A 101(12):4003–4008

    Article  CAS  Google Scholar 

  33. Radi R, Cassina A, Hodara R, Quijano C, Castro L (2002) Peroxynitrite reactions and formation in mitochondria. Free Radic Biol Med 33(11):1451–1464

    Article  CAS  Google Scholar 

  34. Rahnama’i MS (2013) Prostaglandins and phosphodiesterases in the urinary bladder wall. Maastricht Univ. https://doi.org/10.26481/dis.20131122mr

    Article  Google Scholar 

  35. Rahnama’i MS, van Koeveringe GA, Essers PB, de Wachter SG, de Vente J, van Kerrebroeck PE et al (2010) Prostaglandin receptor EP1 and EP2 site in guinea pig bladder urothelium and lamina propria. J Urol 183(3):1241–1247

    Article  Google Scholar 

  36. Rahnama’i MS, Uckert S, Hohnen R, van Koeveringe GA (2013) The role of phosphodiesterases in bladder pathophysiology. Nat Rev Urol 10(7):414–424

    Article  CAS  Google Scholar 

  37. Rahnama’i MS, van Koeveringe GA, Hohnen R, Ona S, van Kerrebroeck PE, de Wachter SG (2013) Distribution of phosphodiesterase type 5 (PDE5) in the lateral wall of the guinea pig urinary bladder. BJU Int 112(2):246–257

    Article  CAS  Google Scholar 

  38. Rahnama’i MS, Hohnen R, van Kerrebroeck PE, van Koeveringe GA (2015) Phosphodiesterase type 2 distribution in the guinea pig urinary bladder. World J Urol 33(10):1623–1633

    Article  Google Scholar 

  39. Ribeiro RA, Freitas HC, Campos MC, Santos CC, Figueiredo FC, Brito GA, Cunha FQ (2002) Tumor necrosis factor-alpha and interleukin-1beta mediate the production of nitric oxide involved in the pathogenesis of ifosfamide induced hemorrhagic cystitis in mice. J Urol 167(5):2229–2234

    Article  CAS  Google Scholar 

  40. Ruiz-Miyazawa KW, Zarpelon AC, Pinho-Ribeiro FA, Pavao-de-Souza GF, Casagrande R, Verri WA Jr (2015) Vinpocetine reduces carrageenan-induced inflammatory hyperalgesia in mice by inhibiting oxidative stress, cytokine production and NF-kappaB activation in the paw and spinal cord. PLoS ONE 10(3):e0118942

    Article  Google Scholar 

  41. Sadir S, Deveci S, Korkmaz A, Oter S (2007) Alpha-tocopherol, beta-carotene and melatonin administration protects cyclophosphamide-induced oxidative damage to bladder tissue in rats. Cell Biochem Funct 25(5):521–526

    Article  CAS  Google Scholar 

  42. Schipke J, Brandenberger C, Rajces A et al (1985) 2017 Assessment of cardiac fibrosis: a morphometric method comparison for collagen quantification. J Appl Physiol 122(4):1019–1030

    Article  Google Scholar 

  43. Sellers D, Chess-Williams R, Michel MC (2018) Modulation of lower urinary tract smooth muscle contraction and relaxation by the urothelium. Naunyn-Schmiedeberg’s Arch Pharmacol 391:675–694. https://doi.org/10.1007/s00210-018-1510-8

    Article  CAS  Google Scholar 

  44. Sönmez MF, Ozdemir Ş, Guzel M, Kaymak E (2017) The ameliorative effects of vinpocetine on apoptosis and HSP-70 expression in testicular torsion in rats. Biotech Histochem 92(2):92–99

    Article  Google Scholar 

  45. Topal T, Oztas Y, Korkmaz A, Sadir S, Oter S, Coskun O, Bilgic H (2005) Melatonin ameliorates bladder damage induced by cyclophosphamide in rats. J Pineal Res 38(4):272–277

    Article  CAS  Google Scholar 

  46. Uckert S, Sigl K, Waldkirch ES, Sandner P, Ulbrich E, Oelke M, Stief CG, Kuczyk MA (2009) Significance of phosphodiesterase isoenzymes in the control of human detrusor smooth muscle function. An immunohistochemical and functional study. Urologe A 48(7):764–769

    CAS  Google Scholar 

  47. Varma SD, Hegde KR (2007) Lens thiol depletion by peroxynitrite. Protective effect of pyruvate. Mol Cell Biochem 298(1–2):199–204

    Article  CAS  Google Scholar 

  48. Wantuch C, Piesla M, Leventhal L (2007) Pharmacological validation of a model of cystitis pain in the mouse. Neurosci Lett 421(3):250–252

    Article  CAS  Google Scholar 

  49. Zhang J, Tian Q, Zhou S-F (2006) Clinical pharmacology of cyclophosphamide and ifosfamide. Current Drug Therapy 1(1):55–84

    Article  CAS  Google Scholar 

  50. Zhang YS, Li JD, Yan C (2018) An update on vinpocetine: new discoveries and clinical implications. Eur J Pharmacol 819:30–34

    Article  CAS  Google Scholar 

  51. Zhao YY, Yu JZ, Li QY, Ma CG, Lu CZ, Xiao BG (2011) TSPO-specific ligand vinpocetine exerts a neuroprotective effect by suppressing microglial inflammation. Neuron Glia Biol 7(2–4):187–197

    Article  Google Scholar 

  52. Zhuang J, Peng W, Li H, Lu Y, Wang K, Fan F, Li S, Xu Y (2013) Inhibitory effects of vinpocetine on the progression of atherosclerosis are mediated by Akt/NF-κB dependent mechanisms in apoE-/- mice. PLoS ONE 8(12):e82509

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to King Khalid University, Saudi Arabia, for providing administrative and technical support. The authors would like to extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this project through the research group program under grant number (R.G.P. 2/31/40).

Funding

The authors would like to extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this project through the research group program under grant number (R.G.P. 2/31/40).

Author information

Authors and Affiliations

Authors

Contributions

RA: designed the experiments and performed the experiments, analyzed the data, and wrote the manuscript. RT: wrote the discussion part in manuscript and carried out the histopathological and immunohistochemical examination. EMEN, MAA, KMA: contributed to funding for project and participated in the evaluation of the histological pictures and writing of the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Eman Mohamad El Nashar.

Ethics declarations

Conflict of interests

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelrahman, R.S., Nashar, E.M.E., Alghamdi, M.A. et al. Phosphodiesterase1 inhibitor “Vinpocetine” ameliorates the inflammation, apoptosis and oxidative stress induced by cyclophosphamide in urinary bladder: an experimental study. Int Urol Nephrol 55, 129–139 (2023). https://doi.org/10.1007/s11255-022-03246-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-022-03246-w

Keywords

Navigation