Skip to main content

Advertisement

Log in

Heat shock protein 70/nitric oxide effect on stretched tubular epithelial cells linked to WT-1 cytoprotection during neonatal obstructive nephropathy

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Background

Mechanical stress is a key pathogenic driver of apoptosis in the tubular epithelium in obstructive nephropathy. Heat shock protein 70 (Hsp70) and Wilms’ tumor (WT-1) have been proposed to represent linked downstream effectors of the cytoprotective properties of NO. In the present study, we sought to evaluate whether the cytoprotective effects of l-arginine in neonatal obstructive nephropathy may be associated with NO-dependent increases in WT-1 and Hsp70 expression.

Methods

Neonatal Wistar–Kyoto rats were submitted to complete unilateral ureteral obstruction (UUO) and treated thereafter with vehicle, L-NAME or l-arginine by daily gavage for 14 days to block or augment NO levels, respectively. Normal rat kidney epithelial cells by NRK-52E were exposed to mechanical stress in vitro in the presence or absence of L-NAME, l-arginine, sodium nitroprusside (SNP), l-arginine + SNP or l-arginine/L-NAME. Induction of apoptosis and the mRNA expression of WT-1 and Hsp70 genes were assessed.

Results

WT-1 and Hsp70 genes expression decreased in the presence of L-NAME and following UUO coincident with increased tubular apoptosis. l-arginine treatment increased NO levels, reduced apoptosis and restored expression levels of WT-1 and Hsp70 to control levels. l-arginine treatment in vitro reduced basal apoptotic rates and prevented apoptosis in response to mechanical strain, an effect enhanced by SNP co-incubation. L-NAME increased apoptosis and prevented the anti-apoptotic action of l-arginine.

Conclusions

l-arginine treatment in experimental neonatal UUO reduces apoptosis coincident with restoration of WT-1 and Hsp70 expression levels and directly inhibits mechanical strain-induced apoptosis in an NO-dependent manner in vitro. This potentially implicates an NO-Hsp70-WT-1 axis in the cytoprotective effects of l-arginine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chevalier RL (2004) Obstructive nephropathy and the developing kidney: too little or too much angiotensin? Kidney Int 65:1517–1518

    Article  PubMed  Google Scholar 

  2. Docherty NG, O’Sullivan OE, Healy DA, Fitzpatrick JM, Watson RW (2006) Evidence that inhibition of tubular cell apoptosis protects against renal damage and development of fibrosis following ureteric obstruction. Am J Physiol Ren Physiol 290:F4–F13

    Article  CAS  Google Scholar 

  3. Power RE, Doyle BT, Higgins D, Brady HR, Fitzpatrick JM, Watson RW (2004) Mechanical deformation induced apoptosis in human proximal renal tubular epithelial cells is caspase dependent. J Urol 171:457–461

    Article  CAS  PubMed  Google Scholar 

  4. Manucha W (2007) Biochemical-molecular markers in unilateral ureteral obstruction. Biocell 31:1–12

    CAS  PubMed  Google Scholar 

  5. Dendooven A, Ishola DA, Nguyen TQ, Van der Giezen DM, Kok RJ, Goldschmeding R, Joles JA (2011) Oxidative stress in obstructive nephropathy. Int J Exp Pathol 92:202–210

    Article  PubMed  PubMed Central  Google Scholar 

  6. Manucha W, Carrizo L, Ruete C, Molina H, Vallés P (2005) Angiotensin II type I antagonist on oxidative stress and heat shock protein 70 (HSP-70) expression in obstructive nephropathy. Cell Mol Biol (Noisy-le-grand) 51(6):547–555

    CAS  Google Scholar 

  7. Mazzei LJ, Garcia IM, Altamirano L, Docherty N, Manucha W (2012) Rosuvastatin preserves renal structure following unilateral ureteric obstruction in the neonatal rat. Am J Nephrol 35(2):103–113

    Article  CAS  PubMed  Google Scholar 

  8. Manucha W, Vallés P (2008) Hsp70/nitric oxide relationship in apoptotic modulation during obstructive nephropathy. Cell Stress Chaperones 13(4):413–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Manucha W, Vallés P (2008) Cytoprotective role of nitric oxide associated with Hsp70 expression in neonatal obstructive nephropathy. Nitric Oxide 18:204–215

    Article  CAS  PubMed  Google Scholar 

  10. Messmer UK, Brune B (1996) Nitric oxide-induced apoptosis: p53-dependent and p53-independent signaling pathways. Biochem J 319:299–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim YM, de Vera ME, Watkins SC, Billiar TR (1997) Nitric oxide protects cultured rat hepatocytes from tumor necrosis factor-alphainduced apoptosis by inducing heat shock protein 70 expression. J Biol Chem 272:1402–1411

    Article  CAS  PubMed  Google Scholar 

  12. Mannick JB, Miao XQ, Stamler JS (1997) Nitric oxide inhibits Fas induced apoptosis. J Biol Chem 272:24125–24128

    Article  CAS  PubMed  Google Scholar 

  13. Xu Q, Hu Y, Kleindienst R, Wick G (1997) Nitric oxide induces heat-shock protein 70 expression in vascular smooth muscle cells via activation of heat shock factor 1. J Clin Invest 100:1089–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Uchiyama T, Atsuta H, Utsugi T, Oguri M, Hasegawa A, Nakamura T, Nakai A, Nakata M, Maruyama I, Tomura H, Okajima F, Tomono S, Kawazu S, Nagai R, Kurabayashi M (2007) HSF1 and constitutively active HSF1 improve vascular endothelial function (heat shock proteins improve vascular endothelial function. Atherosclerosis 190:321–329

    Article  CAS  PubMed  Google Scholar 

  15. Bhagat K, Vallance P (1996) Nitric oxide 9 years on. J R Soc Med 89:667–673

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Moncada S (1997) Nitric oxide in the vasculature: physiology and pathophysiology. Ann N Y Acad Sci 811:60–67

    Article  CAS  PubMed  Google Scholar 

  17. Hegarty NJ, Young LS, Kirwan CN, O’Neill AJ, Bouchier-Hayes DM, Sweeney P, Watson RW, Fitzpatrick JM (2001) Nitric oxide in unilateral ureteral obstruction: effect on regional renal blood flow. Kidney Int 59:1059–1065

    Article  CAS  PubMed  Google Scholar 

  18. Ito K, Chen J, Seshan SV, Khodadadian JJ, Gallagher R, El Chaar M, Vaughan ED Jr, Poppas DP, Felsen D (2005) Dietary arginine supplementation attenuates renal damage after relief of unilateral ureteral obstruction in rats. Kidney Int 68:515–528

    Article  CAS  PubMed  Google Scholar 

  19. Yoo KH, Thornhill BA, Forbes MS, Chevalier RL (2010) Inducible nitric oxide synthase modulates hydronephrosis following partial or complete unilateral ureteral obstruction in the neonatal mouse. Am J Physiol Renal Physiol 298:F62–F71

    Article  CAS  PubMed  Google Scholar 

  20. Forbes MS, Thornhill BA, Park MH, Chevalier RL (2007) Lack of endothelial nitric-oxide synthase leads to progressive focal renal injury. Am J Pathol 170(1):87–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hochberg D, Johnson CW, Chen J, Cohen D, Stern J, Vaughan ED Jr, Poppas D, Felsen D (2000) Interstitial fibrosis of unilateral ureteral obstruction is exacerbated in kidneys of mice lacking the gene for inducible nitric oxide synthase. Lab Invest 80:1721–1728

    Article  CAS  PubMed  Google Scholar 

  22. Tirani SA, Pezeshki Z, Nematbakhsh M, Nasri H, Talebi A (2015) Effect of l-arginine and L-NAME on kidney tissue damage in rats after 24 h of bilateral ureteral obstruction. Int J Prev Med 6:60

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mazzei L, García IM, Cacciamani V, Benardón ME, Manucha W (2010) WT-1 mRNA expression is modulated by nitric oxide availability and Hsp70 interaction after neonatal unilateral ureteral obstruction. Biocell 34(3):121–132

    CAS  PubMed  Google Scholar 

  24. Manucha W, Kurbán F, Mazzei L, Benardón ME, Bocanegra V, Tosi MR, Vallés P (2011) eNOS/Hsp70 interaction on rosuvastatin cytoprotective effect in neonatal obstructive nephropathy. Eur J Pharmacol 650(2–3):487–495

    Article  CAS  PubMed  Google Scholar 

  25. Zhou MS, Schuman IH, Jaimes EA, Raij L (2008) Renoprotection by statins is linked to a decrease in renal oxidative stress, TGFbeta, and fibronectin with concomitant increase in nitric oxide bioavailability. Am J Physiol Renal Physiol 295:F53–F59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. García IM, Mazzei L, Benardón ME, Oliveros L, Cuello-Carrión FD, Gil Lorenzo A, Manucha W, Vallés P (2012) Caveolin-1-eNOS/Hsp70 interactions mediate rosuvastatin antifibrotic effects in neonatal obstructive nephropathy. Nitric Oxide 27(2):95–105

    Article  PubMed  Google Scholar 

  27. Mazzei L, Manucha W (2017) Growing evidence suggests WT1 effects in the kidney development are modulated by Hsp70/NO interaction. J Nephrol 30(1):11–18

    Article  CAS  PubMed  Google Scholar 

  28. Griess JO (1864) On a new series of in which nitrogen is substituted for hydrogen. Philos Trans R Soc Lond B Biol Sci 154:667–731

    Article  Google Scholar 

  29. Morrissey J, Hruska K, Guo G, Wang S, Chen Q, Klahr S (2002) Bone morphometric protein-7 improves renal fibrosis and accelerates the return of renal function. J Am Soc Nephrol 13:S14–S21

    Article  CAS  PubMed  Google Scholar 

  30. Ciocca DR, Cuello-Carrión FD, Natoli AL, Restall C, Anderson RL (2012) Absence of caveolin-1 alters heat shock protein expression in spontaneous mammary tumors driven by Her-2/neu expression. Histochem Cell Biol 137(2):187–194

    Article  CAS  PubMed  Google Scholar 

  31. Liapis H (2003) Biology of congenital obstructive nephropathy. Nephron Exp Nephrol 93:87–91

    Article  Google Scholar 

  32. Goloubinoff P, De Los Rios P (2007) The mechanism of Hsp70 chaperones: (entropic) pulling the models together. Trends Biochem Sci 32:372–380

    Article  CAS  PubMed  Google Scholar 

  33. Cheng H, Cenciarelli C, Shao Z, Vidal M, Parks WP, Pagano M, Cheng-Mayer C (2001) Human T cell leucemia virus type 1 Tax associates with a molecular chaperone complex containing hTid-1 and Hsp70. Curr Biol 11:1771–1775

    Article  CAS  PubMed  Google Scholar 

  34. Jäättelä M (1999) Escaping cell death: survival proteins in cancer. Exp Cell Res 248:30–43

    Article  PubMed  Google Scholar 

  35. Li F, Mao HP, Ruchalski KL, Wang YH, Choy W, Schwartz JH, Borkan SC (2002) Heat stress prevents mitochondrial injury in ATP-depleted renal epithelial cells. Am J Physiol Cell Physiol 283:917–926

    Article  Google Scholar 

  36. Maheswaran S, Englert C, Zheng G, Lee SB, Wong J, Harkin DP, Bean J, Ezzell R, Garvin AJ, McCluskey RT, DeCaprio JA, Haber DA (1998) Inhibition of cellular proliferation by the Wilms tumor suppressor WT-1 requires association with the inducible chaperone Hsp70. Genes Dev 12:1108–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hegarty NJ, Watson RW, Young LS, O’Neill AJ, Brady HR, Fitzpatrick JM (2002) Cytoprotective effects of nitrates in a cellular model of hydronephrosis. Kidney Int 62:70–77

    Article  CAS  PubMed  Google Scholar 

  38. Mazzei L, Docherty NG, Manucha W (2015) Mediators and mechanisms of heat shock protein 70 based cytoprotection in obstructive nephropathy. Cell Stress Chaperones 20(6):893–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Murphy ME (2013) The Hsp70 family and cancer. Carcinogenesis 34(6):1181–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Saylam K, Simon P (2003) WT1 gene mutation responsible for male sex reversal and renal failure: the Frasier syndrome. Eur J Obstet Gynecol Reprod Biol 110(1):111–113

    Article  CAS  PubMed  Google Scholar 

  41. Hohenstein P, Hastie ND (2006) The many facets of the Wilms’ tumour gene, WT1. Hum Mol Genet 15(Spec No 2):R196–R201

    Article  CAS  PubMed  Google Scholar 

  42. Barisoni L, Kriz W, Mundel P, D’Agati V (1999) The dysregulated podocyte phenotype: a novel concept in the pathogenesis of collapsing idiopathic focal segmental glomerulosclerosis and HIV-associated nephropathy. J Am Soc Nephrol 10(1):51–61

    CAS  PubMed  Google Scholar 

  43. Moore AW, McInnes L, Kreidberg J, Hastie ND, Schedl A (1999) YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis. Development 126(9):1845–1857

    CAS  PubMed  Google Scholar 

  44. Huang B, Pi L, Chen C, Yuan F, Zhou Q, Teng J, Jiang T (2012) WT1 and Pax2 re-expression is required for epithelial-mesenchymal transition in 5/6 nephrectomized rats and cultured kidney tubular epithelial cells. Cells Tissues Organs 195(4):296–312

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Grants from the Research and Technology Council of Cuyo University (SECyT), Mendoza, Argentina, and PICT 2012-0234.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Manucha.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists (financial or non-financial).

Ethical statement

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted (IRB approval number 48/2015). This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazzei, L., Cuello-Carrión, F.D., Docherty, N. et al. Heat shock protein 70/nitric oxide effect on stretched tubular epithelial cells linked to WT-1 cytoprotection during neonatal obstructive nephropathy. Int Urol Nephrol 49, 1875–1892 (2017). https://doi.org/10.1007/s11255-017-1658-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-017-1658-z

Keywords

Navigation