Skip to main content

Advertisement

Log in

Peroxisome proliferator-activated receptor-γ–coactivator 1α (PGC-) gene expression in chronic kidney disease patients on hemodialysis: relation to hemodialysis-related cardiovascular morbidity and mortality

  • Nephrology – Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

The aim of the current study was to investigate some of the key regulators of mitochondrial oxidative metabolism in ESRD patients on hemodialysis (ESRD/HD) focusing on peroxisome proliferator-activated receptor-γ–coactivator 1α (PGC-) gene expression and its relation to ESRD/HD-related cardiovascular diseases (CVD) and mortality in an effort to identify new potential targets for pharmacological interventions.

Subjects and methods

The expression of PGC- and one of its downstream genes: COX6C were evaluated in 49 ESRD/HD patients and in 33 age- and sex-matched healthy subjects as controls using quantitative real-time PCR. Malondialdehyde (MDA) was measured using colorimetric method as a marker of oxidative stress. Patients were followed up for 24 months for the development of HD-related cardiovascular complications and mortality.

Results

PGC- and COX6C expressions were significantly down-regulated in ESRD/HD patients compared to the controls (P ≤ 0.001 for both). Additionally, MDA level was higher in HD patients (P ≤ 0.001). Negative correlation was found between PGC- expression and MDA level (P ≤ 0.001). MDA was significantly higher, while PGC- expression was significantly lower in HD patients who developed CVD than in patients who did not. By using multivariate logistic regression analysis, it was found that down-regulated PGC- expression is independently associated with the development of CVD in HD patients.

Conclusion

Our study suggests that ESRD/HD patients might have oxidative mitochondrial dysfunction, which may be partially responsible for CKD-related cardiovascular complications. Pharmacological modulation of PGC-1α might be a promising therapeutic tool to reduce oxidative stress-related complications in ESRD/HD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Al-Nimer MS, Jaleel NA (2012) Assessment of nitrogen radicals and their scavenging activity in patients with end-stage renal failure. Saudi J Kidney Dis Transpl 23:290–295

    PubMed  Google Scholar 

  2. Oberg BP, McMenamin E, Lucas FL, McMonagle E, Morrow J, Ikizler TA et al (2004) Increased prevalence of oxidant stress and inflammation in patients with moderate to severe chronic kidney disease. Kidney Int 65:1009–1016

    Article  PubMed  Google Scholar 

  3. Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352:1685–1695

    Article  CAS  PubMed  Google Scholar 

  4. Locatelli F, Canaud B, Eckardt KU, Stenvinkel P, Wanner C, Zoccali C (2003) Oxidative stress in end-stage renal disease: an emerging threat to patient outcome. Nephrol Dial Transpl 18:1272–1280

    Article  CAS  Google Scholar 

  5. de Jager DJ, Grootendorst DC, Jager KJ, van Dijk PC, Tomas LM, Ansell D et al (2009) Cardiovascular and noncardiovascular mortality among patients starting dialysis. JAMA 302:1782–1789

    Article  PubMed  Google Scholar 

  6. Cibulka R, Racek J (2007) Metabolic disorders in patients with chronic kidney failure. Physiol Res 56:697–705

    CAS  PubMed  Google Scholar 

  7. Canaud B, Cristol J, Morena M, Leray-Moragues H, Bosc J, Vaussenat F (1999) Imbalance of oxidants and antioxidants in hemodialysis patients. Blood Purif 17:99–106

    Article  CAS  PubMed  Google Scholar 

  8. Zaza G, Pontrelli P, Pertosa G, Granata S, Rossini M, Porreca S et al (2008) Dialysis-related systemic microinflammation is associated with specific genomic patterns. Nephrol Dial Transpl 23:1673–1681

    Article  CAS  Google Scholar 

  9. Finck BN, Kelly DP (2006) PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest 116:615–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pedraza-Chaverri J, Sánchez-Lozada LG, Osorio-Alonso H, Tapia E, Scholze A (2016) New pathogenic concepts and therapeutic approaches to oxidative stress in chronic kidney disease. Oxid Med Cell Longev 2016:6043601

    Article  PubMed  PubMed Central  Google Scholar 

  11. Liang H, Ward WF (2006) PGC-1alpha: a key regulator of energy metabolism. Adv Physiol Educ 30:145–151

    Article  PubMed  Google Scholar 

  12. Finkel T (2006) Cell biology: a clean energy programme. Nature 444:151–152

    Article  CAS  PubMed  Google Scholar 

  13. Zaza G, Granata S, Masola V, Rugiu C, Fantin F, Gesualdo L et al (2013) Downregulation of nuclear-encoded genes of oxidative metabolism in dialyzed chronic kidney disease patients. PLoS ONE 8:e77847. doi:10.1371/journal.pone.0077847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Herbelin A, Urena P, Nguyen AT, Zingraff J, Descamps-Latscha B (1991) Elevated circulating levels of interleukin-6 in patients with chronic renal failure. Kidney Int 39:954–960

    Article  CAS  PubMed  Google Scholar 

  15. Granata S, Zaza G, Simone S, Villani G, Latorre D, Pontrelli P et al (2009) Mitochondrial dysregulation and oxidative stress in patients with chronic kidney disease. BMC Genom 10:388. doi:10.1186/1471-2164-10-388

    Article  Google Scholar 

  16. Akahoshi T, Kobayashi N, Hosaka S, Sekiyama N, Wada C, Kondo H (1995) In-vivo induction of monocyte chemotactic and activating factor in patients with chronic renal failure. Nephrol Dial Transpl 10:2244–2249

    Article  CAS  Google Scholar 

  17. Lonnemann G, van der Meer JW, Cannon JG, Dinarello CA, Koch KM, Granolleras C et al (1987) Induction of tumor necrosis factor during extracorporeal blood purification. N Engl J Med 317:963–964

    Article  CAS  PubMed  Google Scholar 

  18. Becker BN, Himmelfarb J, Henrich WL, Hakim RM (1997) Reassessing the cardiac risk profile in chronic hemodialysis patients: a hypothesis on the role of oxidant stress and other non-traditional cardiac risk factors. J Am Soc Nephrol 8:475–486

    CAS  PubMed  Google Scholar 

  19. Serviddio G, Romano AD, Cassano T, Bellanti F, Altomare E, Vendemiale G (2011) Principles and therapeutic relevance for targeting mitochondria in aging and neurodegenerative diseases. Curr Pharm Des 17:2036–2055

    Article  CAS  PubMed  Google Scholar 

  20. Rains JL, Jain SK (2011) Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med 50:567–575

    Article  CAS  PubMed  Google Scholar 

  21. Chatterjee A, Dasgupta S, Sidransky D (2011) Mitochondrial subversion in cancer. Cancer Prev Res (Phila) 4:638–654

    Article  CAS  Google Scholar 

  22. Widlansky ME, Gutterman DD (2011) Regulation of endothelial function by mitochondrial reactive oxygen species. Antioxid Redox Signal 15:1517–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. West AP, Shadel GS, Ghosh S (2011) Mitochondria in innate immune responses. Nat Rev Immunol 11:389–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mitchell P (1976) Possible molecular mechanisms of the protonmotive function of cytochrome systems. J Theor Biol 62:327–367

    Article  CAS  PubMed  Google Scholar 

  25. Yagi K (1998) Simple assay for the level of total lipid peroxides in serum or plasma. Methods Mol Biol 108:101–106

    CAS  PubMed  Google Scholar 

  26. Breborowicz A (1992) Free radicals in peritoneal dialysis: Agents of damage? Perit Dial Int 12:194–198

    CAS  PubMed  Google Scholar 

  27. Tarng DC, Wen Chen T, Huang TP, Chen CL, Liu TY, Wei YH (2002) Increased oxidative damage to peripheral blood leukocyte DNA in chronic peritoneal dialysis patients. J Am Soc Nephrol 13:1321–1330

    Article  CAS  PubMed  Google Scholar 

  28. Raj DS, Boivin MA, Dominic EA, Boyd A, Roy PK, Rihani T et al (2007) Hemodialysis induces mitochondrial dysfunction and apoptosis. Eur J Clin Invest 37:971–977

    Article  CAS  PubMed  Google Scholar 

  29. Rice JB, Stoll LL, Li WG, Denning GM, Weydert J, Charipar E et al (2003) Low-level endotoxin induces potent inflammatory activation of human blood vessels: inhibition by statins. Arterioscler Thromb Vasc Biol 23:1576–1582

    Article  CAS  PubMed  Google Scholar 

  30. Borniquel S, García-Quintáns N, Valle I, Olmos Y, Wild B, Martínez-Granero F et al (2010) Inactivation of Foxo3a and subsequent downregulation of PGC-1α mediate nitric oxide-induced endothelial cell migration. Mol Cell Biol 30:4035–4044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dugan LL, You YH, Ali SS, Diamond-Stanic M, Miyamoto S, DeCleves AE et al (2013) AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function. J Clin Invest 123:4888–4899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rasbach KA, Schnellmann RG (2007) PGC-1alpha over-expression promotes recovery from mitochondrial dysfunction and cell injury. Biochem Biophys Res Commun 355:734–739

    Article  CAS  PubMed  Google Scholar 

  33. Gamboa JL, Billings FTT, Bojanowski MT, Gilliam LA, Yu C, Roshanravan B et al (2016) Mitochondrial dysfunction and oxidative stress in patients with chronic kidney disease. Physiol Rep 4:e12780. doi:10.14814/phy2.12780

    Article  PubMed  PubMed Central  Google Scholar 

  34. Adey D, Kumar R, McCarthy JT, Nair KS (2000) Reduced synthesis of muscle proteins in chronic renal failure. Am J Physiol Endocrinol Metab 278:E219–E225

    CAS  PubMed  Google Scholar 

  35. Lewis MI, Fournier M, Wang H, Storer TW, Casaburi R, Cohen AH et al (2012) Metabolic and morphometric profile of muscle fibers in chronic hemodialysis patients. J Appl Physiol 112:72–78

    Article  PubMed  Google Scholar 

  36. Rao M, Li L, Demello C, Guo D, Jaber BL, Pereira BJ et al (2009) Mitochondrial DNA injury and mortality in hemodialysis patients. J Am Soc Nephrol 20:189–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Guo K, Lu J, Huang Y, Wu M, Zhang L, Yu H et al (2015) Protective role of PGC-1alpha in diabetic nephropathy is associated with the inhibition of ROS through mitochondrial dynamic remodeling. PLoS ONE 10:e0125176. doi:10.1371/journal.pone.0125176

    Article  PubMed  PubMed Central  Google Scholar 

  38. Baldelli S, Aquilano K, Ciriolo MR (2014) PGC-1alpha buffers ROS-mediated removal of mitochondria during myogenesis. Cell Death Dis 5:e1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hambali Z, Ahmed Z, Arab S, Khazaai H (2011) Oxidative stress and its association with cardiovascular disease in chronic renal failure patients. Indian J Nephrol 21:21–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rowe GC, Jiang A, Arany Z (2010) PGC-1 coactivators in cardiac development and disease. Circ Res 107:825–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sano M, Wang SC, Shirai M, Scaglia F, Xie M, Sakai S et al (2004) Activation of cardiac Cdk9 represses PGC-1 and confers a predisposition to heart failure. EMBO J 23:3559–3569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sun CK, Chang LT, Sheu JJ, Wang CY, Youssef AA, Wu CJ et al (2007) Losartan preserves integrity of cardiac gap junctions and PGC-1α gene expression and prevents cellular apoptosis in remote area of left ventricular myocardium following acute myocardial infarction. Int Heart J 48:533–545

    Article  CAS  PubMed  Google Scholar 

  43. Honda T, Kaikita K, Tsujita K, Hayasaki T, Matsukawa M, Fuchigami S et al (2008) Pioglitazone, a peroxisome proliferators-activated receptor-gamma agonist, attenuates myocardial ischemia-reperfusion injury in mice with metabolic disorders. J Moll Cell Cardiol 44:915–926

    Article  CAS  Google Scholar 

  44. Fabregat-Andres O, Paredes F, Monsalve M, Milara J, Ridocci-Soriano F, Gonzalez-Hervas S et al (2016) mRNA PGC-1α levels in blood samples reliably correlates with its myocardial expression: study in patients undergoing cardiac surgery. Anatol J Cardiol 16:622–629

    PubMed  Google Scholar 

  45. Hofer A, Noe N, Tischner C, Kladt N, Lellek V, Schauss A et al (2014) Defining the action spectrum of potential PGC-1alpha activators on a mitochondrial and cellular level in vivo. Hum Mol Genet 23:2400–2415

    Article  CAS  PubMed  Google Scholar 

  46. Bastin J, Aubey F, Rotig A, Munnich A, Djouadi F (2008) Activation of peroxisome proliferator-activated receptor pathway stimulates the mitochondrial respiratory chain and can correct deficiencies in patients’ cells lacking its components. J Clin Endocrinol Metab 93:1433–1441

    Article  CAS  PubMed  Google Scholar 

  47. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F et al (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127:1109–1122

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eman Tayae Elsayed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest that are directly relevant to the content of this article.

Ethical standards

This research was conducted on human participants. The study was approved by the Ethics Committee of Alexandria University, Egypt.

Informed consent

Informed consent was obtained from all individual participants included in the study.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsayed, E.T., Nassra, R.A. & Naga, Y.S. Peroxisome proliferator-activated receptor-γ–coactivator 1α (PGC-) gene expression in chronic kidney disease patients on hemodialysis: relation to hemodialysis-related cardiovascular morbidity and mortality. Int Urol Nephrol 49, 1835–1844 (2017). https://doi.org/10.1007/s11255-017-1628-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-017-1628-5

Keywords

Navigation