Skip to main content
Log in

Inflammation and oxidation: do they improve after kidney transplantation? Relationship with mortality after transplantation

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Summary

Patients with chronic kidney disease (CKD) are characterized by a state of inflammation and oxidative stress that seems to improve after kidney transplantation (KT). Nevertheless, there is controversy regarding what is the best marker that better define inflammation and specially oxidative stress.

Objective

To evaluate the biomarkers which are associated with improvements in inflammation and lipid peroxidation in patients who have undergone KT. To evaluate the relationship between inflammation, lipid peroxidation and mortality in KT.

Patients

196 KT (between 2003 and 2008). 67.9% men; median age: 51.9 years. Inflammation markers analyzed previous KT and 3 months after KT: c-reactive protein(CRP), interleukin 6(IL-6), tumor necrosis factor alpha(TNFα), soluble tumor necrosis factor receptor alpha(sTNFRα), soluble interleukin-2 receptor (sIL-2R). Lipid peroxidation markers analyzed: oxidized low-density lipoprotein (oxLDL) and anti-oxLDL antibodies. Calculation of glomerular filtration rate after KT: MDRD equation.

Results

Following KT, there is a significant decrease in CRP (p = 0.006), IL-6 (p = 0.0037), TNFα (p < 0.0001), sTNFRα (p < 0.0001) and sIL-2R (p < 0.0001), while levels of oxLDL increase after KT (p < 0.0001) and there is not a significantly difference in anti-oxLDL. 12.8% of the patients had died in 2012. These patients had higher levels of IL-6 (p = 0.011) and sTNFRα (p < 0.006) after KT and a lower MDRD (p < 0.0001), hemoglobin (p = 0.012) and albumin (p = 0.007). We observed no statistically differences in the levels of markers previous KT. Of the patients who died, the 43.5% of them had anti-oxLDL antibody levels greater than 75th percentile (P75: 3781 UI/ml, p = 0.028). In the multivariate analysis, age (OR:1.12; p = 0.0129), MDRD (OR:0.92; p = 0.013) and P75 of anti-oxLDL(OR: 5.19; p = 0.026) were independent risk factors for mortality. Independent risk factors for survival were: P75 of IL-6 (HR: 2.45; p = 0.027), oxLDL (HR:19.85; p = 0.002) and anti-oxLDL (HR: 9.55; p = 0.003).

Conclusions

KT improved inflammation but not lipid oxidative state. KT patients who died had a higher inflammatory state (with higher levels of IL-6 and sTNFRα), a worse lipid oxidative state and a worse renal function 3 months after KT. Age, anti-oxLDL and renal function at 3 months after KT were independent risk factors for mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tonelli M, Wiebe N, Culleton B, House A, Rabbat C, Fok M et al (2006) Chronic kidney disease and mortality risk: a systematic review. J Am Soc Nephrol 17(7):2034–2047

    Article  PubMed  Google Scholar 

  2. Foley RN, Parfrey PS, Sarnak MJ (1998) Epidemiology of cardiovascular disease in chronic renal disease. J Am Soc Nephrol 9(12 Suppl):S16–S23

    CAS  PubMed  Google Scholar 

  3. Kato S, Chmielewski M, Honda H, Pecoits-Filho R, Matsuo S, Yuzawa Y et al (2008) Aspects of immune dysfunction in end-stage renal disease. Clin J Am Soc Nephrol 3(5):1526–1533

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sarnak MJ, Jaber BL (2000) Mortality caused by sepsis in patients with end-stage renal disease compared with the general population. Kidney Int 58(4):1758–1764

    Article  CAS  PubMed  Google Scholar 

  5. Weng PH, Hung KY, Huang HL, Chen JH, Sung PK, Huang KC (2011) Cancer-specific mortality in chronic kidney disease: longitudinal follow-up of a large cohort. Clin J Am Soc Nephrol 6(5):1121–1128

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA et al (2003) The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. JAMA 289(19):2560–2572

    Article  CAS  PubMed  Google Scholar 

  7. Cohen G, Hörl WH (2012) Immune dysfunction in uremia—an update. Toxins (Basel) 4(11):962–990

    Article  CAS  Google Scholar 

  8. Lauzurica R, Pastor MC, Bayés B, Hernández JM, Bonet J, Llopis MA et al (2005) F2-isoprostanes in kidney transplant patients: relationship with inflammatory markers. Transplant Proc 37(9):3842–3843

    Article  CAS  PubMed  Google Scholar 

  9. Mekki K, Taleb W, Bouzidi N, Kaddous A, Bouchenak M (2010) Effect of hemodialysis and peritoneal dialysis on redox status in chronic renal failure patients: a comparative study. Lipids Health Dis 3(9):93

    Article  Google Scholar 

  10. Saito I, Folsom AR, Brancati FL, Duncan BB, Chambless LE, McGovern PG (2000) Nontraditional risk factors for coronary heart disease incidence among persons with diabetes: the Atherosclerosis Risk in Communities (ARIC) Study. Ann Intern Med 133(2):81–91

    Article  CAS  PubMed  Google Scholar 

  11. Ridker PM, Cushman M, Stampfer MJ, Tracy RP, Hennekens CH (1997) Inflammation, aspirin and the risk of cardiovascular disease in apparently healthy men. N Engl J Med 336(14):973–979

    Article  CAS  PubMed  Google Scholar 

  12. Ridker PM, Rifai N, Stampfer MJ, Hennekens CH (2000) Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 101(15):1767–1772

    Article  CAS  PubMed  Google Scholar 

  13. Zimmermann J, Herrlinger S, Pruy A, Metzger T, Wanner C (1999) Inflammation enhances cardiovascular risk and mortality in hemodialysis patients. Kidney Int 55(2):648–658

    Article  CAS  PubMed  Google Scholar 

  14. Pecoits-Filho R, Bárány P, Lindholm B, Heimbürger O, Stenvinkel P (2002) Interleukin-6 is an independent predictor of mortality in patients starting dialysis treatment. Nephrol Dial Transplant 17(9):1684–1688

    Article  CAS  PubMed  Google Scholar 

  15. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5(1):9–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lauzurica R, Sancho A, Pastor MC, Cañas L, Juega J, Morales C et al (2011) The soluble IL-2 receptor is a predictor marker of the development of cancer de novo after transplantation. Am J Transplant 11(sup2):426–427

    Google Scholar 

  17. Roberts MA, Hare DL, Ratnaike S, Ierino FL (2006) Cardiovascular biomarkers in CKD: pathophisiology and implications for clinical management of cardiac disease. Am J Kidney Dis 48(3):341–360

    Article  CAS  PubMed  Google Scholar 

  18. Ridker PM, Hennekens CH, Buring JE, Rifai N (2000) C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 342(12):836–843

    Article  CAS  PubMed  Google Scholar 

  19. Bayés B, Pastor MC, Bonal J, Juncà J, Hernandez JM, Riutort N et al (2003) Homocysteine, C-reactive protein, lipid peroxidation and mortality in hemodialysis patients. Nephrol Dial Transplant 18(1):106–112

    Article  PubMed  Google Scholar 

  20. Annuk M (2004) Which marker is informative in characterizing the level of oxidative stress in ESRD patients? Nephron Clin Pract 98(1):c1–c2

    Article  PubMed  Google Scholar 

  21. Holvoet P, Cleemput JV, Collen D, Vanhaecke J (2000) Oxidized low density lipoprotein is a prognostic marker of transplant- associated coronary artery disease. Arterioscler Thromb Vasc Biol 20(3):698–702

    Article  CAS  PubMed  Google Scholar 

  22. Delimaris I, Faviou E, Antonakos G, Stathopoulou E, Zachari A, Dionyssiou-Asteriou A (2007) Oxidized LDL, serum oxidizability and serum lipid levels in patients with breast or ovarian cancer. Clin Biochem 40(15):1129–1134

    Article  CAS  PubMed  Google Scholar 

  23. Suzuki K, Ito Y, Wakai K, Kawado M, Hashimoto S, Toyoshima H, Japan Collaborative Cohort Study et al (2004) Serum oxidized low-density lipoprotein levels and risk of colorectal cancer: a case-control study nested in the Japan Collaborative Cohort Study. Cancer Epidemiol Biomark Prev 13(11 Pt 1):1781–1787

    CAS  Google Scholar 

  24. Canaud B, Cristol JP, Morena M, Leray-Moragues H, Bosc JY, Vaussenat F (1999) Imbalance of oxidants and antioxidants in haemodialysis patients. Blood Purif 17:99–106

    Article  CAS  PubMed  Google Scholar 

  25. Evans RW, Manninen DL, Garrison LP, Hart LG, Blagg CR, Gutman RA et al (1985) The quality of life of patients with end-stage renal disease. N Engl J Med 312(9):553–559

    Article  CAS  PubMed  Google Scholar 

  26. Laupacis A, Keown P, Pus N, Krueger H, Ferguson B, Wong C, Muirhead N (1996) A study of the quality of live and cost-utility of renal transplantation. Kidney Int 50(1):235–242

    Article  CAS  PubMed  Google Scholar 

  27. Port FK, Wolfe RA, Mauger EA, Berling DP, Jiang K (1993) Comparison of survival probabilities for dialysis patients versus cadaveric renal transplant recipients. JAMA 270(11):1339–1343

    Article  CAS  PubMed  Google Scholar 

  28. Wolfe RA, Ashby VB, Milford EL et al (1999) Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N Engl J Med 341(23):1725–1730

    Article  CAS  PubMed  Google Scholar 

  29. Simmons EM, Langone A, Sezer MT, Vella JP, Recupero P, Morrow JD et al (2005) Effect of renal transplantation on biomarkers of inflammation and oxidative stress in end-stage renal disease patients. Transplantation 79(8):914–919

    Article  CAS  PubMed  Google Scholar 

  30. Estrada-Zambrano A, Biosca-Adzet C, Bayés-Genís B, Doladé-Botias M, Lauzurica-Valdemoros R, Romero-González R (2007) Evaluation of the equations to estimate the glomerular filtration rate in kidney transplant recipients. Transplant Proc 39(7):2210–2213

    Article  CAS  PubMed  Google Scholar 

  31. Cueto-Manzano AM, Morales-Buenrostro LE, González-Espinoza L, González-Tableros N, Martín-del-Campo F, Correa-Rotter R et al (2005) Markers of inflammation before and after renal transplantation. Transplantation 80(1):47–51

    Article  CAS  PubMed  Google Scholar 

  32. Campise M, Bamonti F, Novembrino C, Ipolito S, Tarantino A, Cornelli U et al (2003) Oxidative stress in kidney transplant patients. Transplantation 76(10):1474–1478

    Article  CAS  PubMed  Google Scholar 

  33. Minz M, Heer M, Arora S, Sharma A, Khullar M (2006) Oxidative status in stable renal transplantation. Transplant Proc 38(7):2020–2021

    Article  CAS  PubMed  Google Scholar 

  34. Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press, Oxford

  35. Cofan F, Zambon D, Rodriguez C, Laguna JC, Vazquez M, Casais E et al (1999) Oxidation of low-density lipoproteins in renal transplant recipients. Transplant Proc 31(6):2333–2334

    Article  CAS  PubMed  Google Scholar 

  36. Bakar F, Keven K, Dogru B, Aktan F, Erturk S, Tuzuner A et al (2009) Low-density lipoprotein oxidizability and the alteration of its fatty acid content in renal transplant recipients treated with cyclosporine/tacrolimus. Transplant Proc 41(5):1630–1633

    Article  CAS  PubMed  Google Scholar 

  37. Ghanem H, van den Dorpel MA, Weimar W, Man in’T Veld AJ, El-Kannishy MH, Jansen H (1996) Increased low density lipoproteína oxidation in stable kidney transplant recipients. Kidney Int 49(2):488–493

    Article  CAS  PubMed  Google Scholar 

  38. Suzuki N, Sakane T, Tsunematsu T (1990) Effects of a novel immunosuppressive agent, FK506, on human B cell activation. Clin Exp Immunol 79(2):240–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hannam-Harris AC, Taylor DS, Nowell PC (1985) Cyclosporin A directly inhibits human B-cell proliferation by more than a single mechanism. J Leukoc Biol 38(2):231–239

    CAS  PubMed  Google Scholar 

  40. Heidt S, Roelen DL, Eijsink C, Eikmans M, van Kooten C, Claas FH et al (2010) Calcineurin inhibitors affect B cell antibody responses indirectly by interfering with T cell help. Clin Exp Immunol 159(2):199–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kishimoto T (2010) IL-6: from its discovery to clinical applications. Int Immunol 22(5):347–352

    Article  CAS  PubMed  Google Scholar 

  42. Simpson RJ, Hammacher A, Smith DK, Matthews JM, Ward LD (1997) Interleukin-6: structure-function relationships. Protein Sci 6(5):929–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Biswas P, Delfanti F, Bernasconi S, Mengozzi M, Cota M, Polentarutti N et al (1998) Interleukin 6 induces monocyte chemotactic protein-1 in peripheral blood mononuclear cells and in the U937 cell line. Blood 91(1):258–265

    CAS  PubMed  Google Scholar 

  44. Zhang L, Peppel K, Sivashanmugam P, Orman ES, Brian L, Exum ST et al (2007) Expression of tumor necrosis factor receptor-1 in arterial wall cells promotes atherosclerosis. Arterioscler Thromb Vasc Biol 27(5):1087–1094

    Article  PubMed  PubMed Central  Google Scholar 

  45. Dossus L, Becker S, Rinaldi S, Lukanova A, Tjønneland A, Olsen A et al (2011) Tumor necrosis factor (TNF)-α, soluble TNF receptors and endometrial cancer risk: the EPIC study. Int J Cancer 129(8):2032–2037

    Article  CAS  PubMed  Google Scholar 

  46. Shoenfeld Y, Wu R, Dearing LD, Matsuura E (2004) Are anti-oxidized low-density lipoproteína antibodies pathogenic or protective? Circulation 110(17):2552–2558

    Article  PubMed  Google Scholar 

  47. Wang Y, Li H, Diao Y, Li H, Zhang Y, Yin C et al (2008) Relationship between oxidized LDL antibodies and different stages of esophageal carcinoma. Arch Med Res 39(8):760–767

    Article  PubMed  Google Scholar 

  48. Shoji T, Fukumoto M, Kimoto E, Shinohara K, Emoto M, Tahara H et al (2002) Antibody to oxidized low-density lipoprotein and cardiovascular mortality in end-stage renal disease. Kidney Int 62(6):2230–2237

    Article  CAS  PubMed  Google Scholar 

  49. Bayés B, Pastor MC, Bonal J, Foraster A, Romero R (2006) Oxidative stress, inflammation and cardiovascular mortality in haemodialysis-role of seniority and intravenous ferrotherapy: analysis at 4 years of follow-up. Nephrol Dial Transplant 21(4):984–990

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Cañas.

Ethics declarations

Conflict of interest

Dr. Eva Iglesias, Dr. Laura Cañas, Dr. María Cruz Pastor, Dr. Jaume Barallat, Dr. Javier Juega, Dr. Ioana Bancu, Dr. Ricardo Lauzurica declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cañas, L., Iglesias, E., Pastor, M. et al. Inflammation and oxidation: do they improve after kidney transplantation? Relationship with mortality after transplantation. Int Urol Nephrol 49, 533–540 (2017). https://doi.org/10.1007/s11255-016-1435-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-016-1435-4

Keywords

Navigation