Skip to main content
Log in

Loss of heparin-binding protein prevents necrotizing glomerulonephritis: first clues hint at plasminogen activator inhibitor-1

  • Nephrology - Translational Section
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

The orchestration of acute inflammatory kidney injury is subject to widespread influences and involves cytokines as well as chemokines released by resident as well as infiltrating cells. Although intense research efforts have been made in the field, it still unravels yet novel key molecules involved in the pathogenesis of this kidney disease. A heparin-binding growth factor denoted midkine is expressed by various cell types following stress of tissue damage. Specific functions relate to orchestration of reparative and inflammatory processes by promoting migration of leucocytes and release of chemokines with ensuing angiogenesis. Midkine appears as a double-edged sword with beneficial or harmful effects in injured tissues. Here, we discuss a recent publication that provides evidence for the beneficial role of midkine in progressive glomerulonephritis, most likely due to blockade of plasminogen activator inhibitor-1 release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Stel VS, van de Luijtgaarden MW, Wanner C, Jager KJ, on behalf of the European Renal Registry Investigators (2011) The 2008 ERA-EDTA registry annual report—a précis. NDT Plus 4(1):1–13

    Article  PubMed  Google Scholar 

  2. Erlich JH, Holdsworth SR, Tipping PG (1997) Tissue factor initiates glomerular fibrin deposition and promotes major histocompatibility complex class II expression in crescentic glomerulonephritis. Am J Pathol 150:873–880

    PubMed  CAS  Google Scholar 

  3. Kitching AR, Holdsworth SR, Ploplis VA, Plow EF, Collen D, Carmeliet P, Tipping PG (1997) Plasminogen and plasminogen activators protect against renal injury in crescentic glomerulonephritis. J Exp Med 185:963–968

    Article  PubMed  CAS  Google Scholar 

  4. Kojima H, Kosugi T, Sato W, Sato Y, Maeda K, Kato N, Kato K, Inaba S, Ishimoto T, Tsuboi N, Matsuo S, Maruyama S, Yuzawa Y, Kadomatsu K (2013) Deficiency of growth factor midkine exacerbates necrotizing glomerular injuries in progressive glomerulonephritis. Am J Pathol 182(2):410–419

    Article  PubMed  CAS  Google Scholar 

  5. Rerolle JP, Hertig A, Nguyen G, Sraer JD, Rondeau EP (2000) Plasminogen activator inhibitor type 1 is a potential target in renal fibrogenesis. Kidney Int 58:1841–1850

    Article  PubMed  CAS  Google Scholar 

  6. Eddy AA (2000) Plasminogen activator inhibitor-1 and the kidney. Am J Physiol Renal Physiol 283:F209–F220

    Google Scholar 

  7. Xu Y, Hagege J, Mougenot B, Sraer JD, Ronne E, Rondeau E (1996) Different expression of the plasminogen activation system in renal thrombotic microangiopathy and the normal human kidney. Kidney Int 50:2011–2019

    Article  PubMed  CAS  Google Scholar 

  8. Grandaliano G, Gesualdo L, Ranieri E, Monno R, Schena FP (2000) Tissue factor, plasminogen activator inhibitor-1, and thrombin receptor expression in human crescentic glomerulonephritis. Am J Kidney Dis 35:726–738

    Article  PubMed  CAS  Google Scholar 

  9. Lee HS, Park SY, Moon KC, Hong HK, Song CY, Hong SY (2000) mRNA expression of urokinase and plasminogen activator inhibitor-1 in human crescentic glomerulonephritis. Histopathology 39:203–209

    Article  Google Scholar 

  10. Kitching AR, Kong YZ, Huang XR, Davenport P, Edgtton KL, Carmeliet P, Holdsworth SR, Tipping PG (2003) Plasminogen activator inhibitor-1 is a significant determinant of renal injury in experimental crescentic glomerulonephritis. J Am Soc Nephrol 14:1487–1495

    Article  PubMed  Google Scholar 

  11. Iwaki T, Urano T, Umemura K (2012) PAI-1, progress in understanding the clinical problem and its aetiology. Br J Haematol 157(3):291–298

    Article  PubMed  CAS  Google Scholar 

  12. Eddy AA, Fogo AB (2006) Plasminogen activator inhibitor-1 in chronic kidney disease: evidence and mechanisms of action. J Am Soc Nephrol 17:2999–3012

    Article  PubMed  CAS  Google Scholar 

  13. Preissner KT et al (2000) Urokinase receptor: a molecular organizer in cellular communication. Curr Opin Cell Biol 12:621–628

    Article  PubMed  CAS  Google Scholar 

  14. Oda T, Jung YO, Kim HS, Cai X, Lopez-Guisa JM, Ikeda Y, Eddy AA (2001) PAI-1 deficiency attenuates the fibrogenic response to ureteral obstruction. Kidney Int 60:587–596

    Article  PubMed  CAS  Google Scholar 

  15. Degryse B et al (2004) The low density lipoprotein receptor-related protein is a motogenic receptor for plasminogen activator inhibitor-1. J Biol Chem 279:22595–22604

    Article  PubMed  CAS  Google Scholar 

  16. Samarakoon R, Higgins SP, Higgins CE, Higgins PJ (2008) TGF-β1-induced plasminogen activator inhibitor-1 expression in vascular smooth muscles requires pp 60c-src/EGFRY845 and Rho/ROCK signaling. J Mol Cell Cardiol 44:527–538

    Article  PubMed  CAS  Google Scholar 

  17. Ha H, Oh EY, Lee HB (2009) The role of plasminogen activator inhibitor 1 in renal and cardiovascular diseases. Nat Rev Nephrol 5:203–211

    Article  PubMed  CAS  Google Scholar 

  18. Czekay RP, Wilkins-Port CE, Higgins SP, Freytag J, Overstreet JM, Klein RM, Higgins CE, Samarakoon R, Higgins PJ (2011) PAI-1: an integrator of cell signaling and migration. Int J Cell Biol 2011:562481

    PubMed  Google Scholar 

  19. Brown NJ, Vaughan DE, Fogo AB (2002) The renin-angiotensin-aldosterone system and fibrinolysis in progressive renal disease. Semin Nephrol 22:399–406

    Article  PubMed  CAS  Google Scholar 

  20. Brown NJ, Kim KS, Chen YQ, Blevins LS, Nadeau JH, Meranze SG, Vaughan DE (2000) Synergistic effect of adrenal steroids and angiotensin II on plasminogen activator inhibitor-1 production. J Clin Endocrinol Metab 85:336–344

    Article  PubMed  CAS  Google Scholar 

  21. Nakamura S, Nakamura I, Ma L, Vaughan DE, Fogo AB (2000) Plasminogen activator inhibitor-1 expression is regulated by the angiotensin type 1 receptor in vivo. Kidney Int 58:251–259

    Article  PubMed  CAS  Google Scholar 

  22. Muramatsu T (2002) Midkine and pleiotrophin: two related proteins involved in development, survival, inflammation and tumorigenesis. J Biochem 132:359–371

    Article  PubMed  CAS  Google Scholar 

  23. Kosugi T, Sato W (2012) Midkine and the kidney: health and diseases. Nephrol Dial Transpl 27(1):16–21

    Article  CAS  Google Scholar 

  24. Kato K, Kosugi T, Sato W, Arata-Kawai H, Ozaki T, Tsuboi N, Ito I, Tawada H, Yuzawa Y, Matsuo S, Kadomatsu K, Maruyama S (2011) Growth factor midkine is involved in the pathogenesis of renal injury induced by protein overload containing endotoxin. Clin Exp Nephrol 15:346–354

    Article  PubMed  CAS  Google Scholar 

  25. Sato W, Kadomatsu K, Yuzawa Y, Muramatsu H, Hotta N, Matsuo S, Muramatsu T (2001) Midkine is involved in neutrophil infiltration into the tubulointerstitium in ischemic renal injury. J Immunol 167(6):3463–3469

    PubMed  CAS  Google Scholar 

  26. Kosugi T, Yuzawa Y, Sato W, Arata-Kawai H, Suzuki N, Kato N, Matsuo S, Kadomatsu K (2007) Midkine is involved in tubulointerstitial inflammation associated with diabetic nephropathy. Lab Invest 87(9):903–1344

    Article  PubMed  CAS  Google Scholar 

  27. Hobo A, Yuzawa Y, Kosugi T, Kato N, Asai N, Sato W, Maruyama S, Ito Y, Kobori H, Ikematsu S, Nishiyama A, Matsuo S, Kadomatsu K (2009) The growth factor midkine regulates the renin-angiotensin system in mice. J Clin Invest 119(6):1616

    Article  PubMed  CAS  Google Scholar 

  28. Ezquerra L, Herradon G, Nguyen T, Silos-Santiago I, Deuel TF (2005) Midkine, a newly discovered regulator of the renin-angiotensin pathway in mouse aorta: significance of the pleiotrophin/midkine developmental gene family in angiotensin II signaling. Biochem Biophys Res Commun 333:636–643

    Article  PubMed  CAS  Google Scholar 

  29. Kojima S, Muramatsu H, Amanuma H, Muramatsu T (1995) Midkine enhances fibrinolytic activity of bovine endothelial cells. J Biol Chem 270:9590–9596

    Article  PubMed  CAS  Google Scholar 

  30. Yoshida Y, Ikematsu S, Moritoyo T et al (2001) Intraventricular administration of the neurotrophic factor midkine ameliorates hippocampal delayed neuronal death following transient forebrain ischemia in gerbils. Brain Res 894:46–55

    Article  PubMed  CAS  Google Scholar 

  31. Takada J, Ooboshi H, Ago T et al (2005) Postischemic gene transfer of midkine, a neurotrophic factor, protects against focal brain ischemia. Gene Ther 12:487–493

    Article  PubMed  CAS  Google Scholar 

  32. Kim YB, Ryu JK, Lee HJ et al (2010) Midkine, heparin-binding growth factor, blocks kainic acid-induced seizure and neuronal cell death in mouse hippocampus. BMC Neurosci 11:42

    Article  PubMed  Google Scholar 

  33. Horiba M, Kadomatsu K, Yasui K, Lee JK, Takenaka H, Sumida A, Kamiya K, Chen S, Sakuma S, Muramatsu T, Kodama I (2006) Midkine plays a protective role against cardiac ischemia/reperfusion injury through a reduction of apoptotic reaction. Circulation 114(16):1713–2015

    Article  PubMed  CAS  Google Scholar 

  34. Takenaka H, Horiba M, Ishiguro H, Sumida A, Hojo M, Usui A, Akita T, Sakuma S, Ueda Y, Kodama I, Kadomatsu K (2009) Midkine prevents ventricular remodeling and improves long-term survival after myocardial infarction. Am J Physiol Heart Circ Physiol 296(2):H462–H469

    Article  PubMed  CAS  Google Scholar 

  35. Sumida A, Horiba M, Ishiguro H, Takenaka H, Ueda N, Ooboshi H, Opthof T, Kadomatsu K, Kodama I (2010) Midkine gene transfer after myocardial infarction in rats prevents remodelling and ameliorates cardiac dysfunction. Cardiovasc Res 86(1):113–2136

    Article  PubMed  CAS  Google Scholar 

  36. Ishiguro H, Horiba M, Takenaka H, Sumida A, Opthof T, Ishiguro YS, Kadomatsu K, Murohara T, Kodama I (2011) A single intracoronary injection of midkine reduces ischemia/reperfusion injury in Swine hearts: a novel therapeutic approach for acute coronary syndrome. Front Physiol 2:27

    Article  PubMed  CAS  Google Scholar 

  37. Duffield JS, Tipping PG, Kipari T, Cailhier JF, Clay S, Lang R, Bonventre JV, Hughes J (2005) Conditional ablation of macrophages halts progression of crescentic glomerulonephritis. Am J Pathol 167:1207–1219

    Article  PubMed  CAS  Google Scholar 

  38. Salaru DL, Mertens PR (2012) Lessons from the heart and ischemic limbs: midkine as anti-inflammatory mediator for kidney diseases? Int Urol Nephrol [Epub ahead of print]

Download references

Acknowledgments

D.L.Ş. is funded by The European Social Fund, Project POSDRU/107/1.5/S/78702. P.R.M. is funded by Sonderforschungsbereich (SFB) 854, project 1 and ME 1365/7-1. Current address of D. L. Şalaru: University of Medicine and Pharmacy “Gr.T.Popa”, Iaşi, Romania.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter R. Mertens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Şalaru, D.L., Mertens, P.R. & Bartsch, P. Loss of heparin-binding protein prevents necrotizing glomerulonephritis: first clues hint at plasminogen activator inhibitor-1. Int Urol Nephrol 45, 1483–1487 (2013). https://doi.org/10.1007/s11255-013-0415-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-013-0415-1

Keywords

Navigation