Skip to main content
Log in

Long-Time Behavior of Nonautonomous Fokker-Planck Equations and Cooling of Granular Gases

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

We analyze the asymptotic behavior of linear Fokker-Planck equations with time-dependent coefficients. Relaxation towards a Maxwellian distribution with time-dependent temperature is shown under explicitly computable conditions. We apply this result to the study of Brownian motion in granular gases by showing that the Homogenous Cooling State attracts any solution at an algebraic rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. Risken, The Fokker-Planck Equation. Methods of Solution and Applications, Springer, Berlin (1989).

    Google Scholar 

  2. W. T. Coffey, Yu. P. Kalmikov, and J. T. Waldron, The Langevin Equation with Applications in Physics Chemistry and Electrical Engineering, World Scientific, 1996.

  3. A. Arnold, P. Markowich, G. Toscani, and A. Unterreiter, “On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations,” Commun. Partial Different. Equat., 26, 43–100 (2001).

    MathSciNet  Google Scholar 

  4. J. A. Carrillo and G. Toscani, “Exponential convergence toward equilibrium for homogeneous Fokker-Planck-type equations,” Math. Meth. Appl. Sci., 21, 1269–1286 (1998).

    MathSciNet  Google Scholar 

  5. A. Arnold, J. A. Carrillo, L. Desvillettes, J. Dolbeault, A. Jungel, C. Lederman, P. A. Markowich, G. Toscani, and C. Villani, “Entropies and equilibria of many-particle systems: an essay on recent research,” Monatsh. Math., 142, 35–43 (2004).

    Article  MathSciNet  Google Scholar 

  6. P. Alpatov and L. E. Reichl, “Spectral properties of a time-periodic Fokker-Planck equation,” Phys. Rev. E, 49, 2630–2638 (1994).

    Article  Google Scholar 

  7. J. Luczka and B. Zaborek, Brownian Motion: a Case of Temperature Fluctuations, Preprint arxiv: cond-mat/0406708v1 (2004).

  8. J. J. Brey, J. W. Dufty, and A. Santos, “Kinetic models for granular flow,” J. Statist. Phys., 97, 281–322 (1999).

    Article  MathSciNet  Google Scholar 

  9. J. L. Vazquez, “Asymptotic behaviour for the porous medium equation posed in the whole space,” J. Evol. Equat., 3, 67–118 (2003).

    MATH  MathSciNet  Google Scholar 

  10. A. V. Bobylev, C. Cercignani, and G. Toscani, “Proof of an asymptotic property of self-similar solutions of the Boltzmann equation for granular materials,” J. Statist. Phys., 111, 403–417 (2003).

    Article  MathSciNet  Google Scholar 

  11. J. J. Brey, J. W. Dufty, and A. Santos, “Dissipative dynamics for hard spheres,” J. Statist. Phys., 87, 1051–1066 (1997).

    Article  MathSciNet  Google Scholar 

  12. I. Goldhirsch, “Scales and kinetics of granular flows,” Chaos, 9, 659–672 (1999).

    Article  MATH  Google Scholar 

  13. M. H. Ernst and R. Brito, “High energy tails for inelastic Maxwell models,” Europhys. Lett., 43, 497–502 (2002).

    Google Scholar 

  14. P. K. Haff, “Grain flow as a fluid-mechanical phenomenon,” J. Fluid Mech., 134, 401–430 (1983).

    MATH  Google Scholar 

  15. C. Cercignani, The Boltzmann equation and its applications, Springer, New York (1988).

    Google Scholar 

  16. B. Lods and G. Toscani, “The dissipative linear Boltzmann equation for hard spheres,” J. Statist. Phys., 117, No.3, 635–664 (2004).

    Article  MathSciNet  Google Scholar 

  17. M. H. Ernst and R. Brito, “Scaling solutions of inelastic Boltzmann equation with over-populated high energy tails,” J. Statist. Phys., 109, 407–432 (2002).

    MathSciNet  Google Scholar 

  18. S. McNamara and W. R. Young, “Kinetics of a one-dimensional granular medium in the quasielastic limit,” Phys. Fluids A, 5, 34–45 (1993).

    MathSciNet  Google Scholar 

  19. G. Toscani, “One-dimensional kinetic models of granular flows,” MMAN Math. Model. Numer. Anal., 34, 1277–1291 (2000).

    MATH  MathSciNet  Google Scholar 

  20. E. Caglioti and C. Villani, “Homogeneous cooling states are not always good approximations to granular flows,” Arch. Ration. Mech. and Anal., 163, 329–343 (2002).

    MathSciNet  Google Scholar 

  21. Li Hailang and G. Toscani, “Long-time asymptotics of kinetic models of granular flows,” Arch. Ration. Mech. and Anal., 172, 407–428 (2004).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Published in Ukrains'kyi Matematychnyi Zhurnal, Vol. 57, No. 6, pp. 778–789, June, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lods, B., Toscani, G. Long-Time Behavior of Nonautonomous Fokker-Planck Equations and Cooling of Granular Gases. Ukr Math J 57, 923–935 (2005). https://doi.org/10.1007/s11253-005-0240-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-005-0240-5

Keywords

Navigation