Skip to main content
Log in

Effects of dietary supplementation of peanut skins (Arachis hypogaea) on performance, digestibility, and rumen fermentation of cattle: a meta-analysis

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

This study aimed to estimate the magnitude of the effects of dietary inclusion of peanut skins (PS) byproduct (Arachis hypogea L.) on intake, total-tract digestibility, and rumen fermentation of cattle via meta-analysis. Data were collected following the PRISMA methodology. Nine manuscripts and a graduate thesis met the inclusion criteria from 1983 to 2010. The effect size was estimated by calculating the weighted raw mean differences (RMD) between PS vs. control diets. The RMD was compared with a robust variance estimation method followed by a meta-regression and a dose–response analysis fitting the diet characteristics like crude protein content (CP), NDF content, ether extract content (EE), tannin content, and PS level in diet (0 to 40%) as covariates. Dietary PS decreased (P < 0.01) total-tract CP digestibility (52.0 vs. 64.3%), final body weight (371.5 vs. 397.9 kg), and average daily gain (1.14 vs. 1.44 kg/day) among treatment comparisons. Likewise, PS decreased total VFA (92.6 vs. 107.6 mmol/L) and NH3-N (8.22 vs. 12.1 mg/dL), but no effects were observed on rumen pH (6.47 vs. 6.14) and VFA molar proportions. Despite the between-cluster variance, dietary PS increased the ether extract digestibility (77.5 vs. 70.2%) among treatment comparisons. The subset and dose–response analysis revealed that PS should not exceed 8% (DM basis) in the diet to prevent negative effects on CP digestibility and animal performance. In conclusion, the results of this meta-analysis do not support the dietary inclusion of PS in cattle diets beyond 8%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The authors declare that all datasets generated during the study will be made available in a freely accessible online data repository.

Code availability

Not applicable.

References

  • Arriola, K.G., Oliveira, A.S., Jiang, Y., Kim, D., Silva, H.M., Kim, S.C., Amaro, F.X., Ogunade, I.M., Sultana, H., Pech Cervantes, A.A., Ferraretto, L.F., Vyas, D., and Adesogan, A.T. 2021. Meta-analysis of effects of inoculation with Lactobacillus buchneri, with or without other bacteria, on silage fermentation, aerobic stability, and performance of dairy cows. Journal of Dairy Science, 2020- 19647.

  • Austin, P.J., Suchar, L.A., Robbins C.T., and Hagerman, A.E. 1989. Tannin-binding proteins in saliva of deer and their absence in saliva of sheep and cattle. Journal of Chemical Ecology, 15: 1335–1347.

    Article  CAS  PubMed  Google Scholar 

  • Borenstein, M., Higgins, J.P.T., Hedges, L.V., and Rothstein, H.R. 2017. Basics of meta-analysis: I2 is not an absolute measure of heterogeneity. Research Synthesis Methods, 8: 5–18.

    Article  PubMed  Google Scholar 

  • Clohessy, J.W., Sanjel, S., O’Brien, G.K., Barocco, R., Kumar, S., Adkins, S., Tillman, B., Wright, D.L., and Small, I.M. 2021. Development of a high-throughput plant disease symptom severity assessment tool using machine learning image analysis and integrated geolocation. Computers and Electronics in Agriculture, 184: 106089.

    Article  Google Scholar 

  • Constanza, K.E., White, B.L., Davis, J.P., Sanders, T.H., and Dean, L.L. 2012. Value-added processing of peanut skins: Antioxidant capacity, total phenolics, and procyanidin content of spray-dried extracts. Journal of Agricultural and Food Chemistry, 60: 10776–10783.

    Article  CAS  PubMed  Google Scholar 

  • Dean, L.L. 2020. Extracts of peanut skins as a source of bioactive compounds: Methodology and applications. Applied Sciences (Switzerland), 10:1–26.

    Google Scholar 

  • Descalzo, A.M., and Sancho, A.M. 2008. A review of natural antioxidants and their effects on oxidative status, odor and quality of fresh beef produced in Argentina. Meat Science, 79: 423–436.

    Article  CAS  PubMed  Google Scholar 

  • Egger, M., Smith, G.D., Schneider, M., and Minder, C. 1997. Bias in meta-analysis detected by a simple, graphical test. British Medical Journal, 315: 629–634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farhat, L.C., Flores, J.M., Behling, E., Avila-Quintero, V.J., Lombroso, A., Cortese, S., Polanczyk, G.V., and Bloch, M.H. 2022. The effects of stimulant dose and dosing strategy on treatment outcomes in attention-deficit/hyperactivity disorder in children and adolescents: a Meta-analysis. Molecular Psychiatry.

  • Fisher, Z., Tipton, E., and Zhipeng, H. 2015. Robumeta: Robust Variance Meta-Regression. R package version 1.6. Package ‘robumeta.’

  • Fisher, Z., Tipton, E., Zhipeng, H., and Fisher, M.Z. 2017. Package ‘robumeta.’

  • Francisco, M.L.L.D., and Resurreccion, A.V.A. 2009. Total phenolics and antioxidant capacity of heat-treated peanut skins. Journal of Food Composition and Analysis, 22: 16–24.

    Article  CAS  Google Scholar 

  • Goetsch, A.L., Galloway, D.L., Forster, L.A., Murphy, G.E., Grant, E.W., Sun, W., Patil, A., and West, C.P. 1993. Effects of various supplements on voluntary intake and performance by growing cattle consuming forage moderate to high in crude protein. Archiv fur Tierernahrung, 44: 163–174.

    Article  CAS  PubMed  Google Scholar 

  • Greenland, S. 1995. Dose-response and trend analysis in epidemiology: alternatives to categorical analysis. Epidemiology, 6: 356–365.

    Article  CAS  PubMed  Google Scholar 

  • Greenland, S., and Longnecker, M.P. 1992. Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. American Journal of Epidemiology, 135: 1301–1309.

    Article  CAS  PubMed  Google Scholar 

  • Hedges, L.V., Tipton, E., and Johnson, M.C. 2010. Robust variance estimation in meta-regression with dependent effect size estimates. Research Synthesis Methods, 1: 39–65.

    Article  PubMed  Google Scholar 

  • Higgins, J.P.T. 2008. Commentary: Heterogeneity in meta-analysis should be expected and appropriately quantified. International Journal of Epidemiology, 37: 1158–1160.

    Article  PubMed  Google Scholar 

  • Hill, G.M. 2002. Peanut by-products fed to cattle. Veterinary Clinics of North America - Food Animal Practice, 18: 295–315.

    Article  PubMed  Google Scholar 

  • Hill, G.M., Utley, P.R., Newton, G.L., and Al, H.E.T. 1987. Dietary urea influences on digestibility and utilization of diets containing peanut skins by steers. 1: 1–7.

    Google Scholar 

  • Hill, G.M., Utley, P.R., Newton, G.L., and Al, H.E.T. 1985. Digestibility and utilization of ammonia - treated and urea-supplemented peanut skin diets fed to cattle.

  • Hu, M.L. 2011. Dietary Polyphenols as Antioxidants and Anticancer Agents: More Questions than Answers.

  • Idowu, M., Bryant, V., Terrill, T.H., Estrada-Reyes, Z.M., Whitley, N.C., Dean, L., Kouakou, B., Ogunade, I.M., and Pech-Cervantes, A.A. 2021. 334: Effect of Dietary Supplementation of Peanut Skins with and Without Polyphenols on the Performance, Rumen Fermentation and Carcass Characteristics of Florida-native Sheep. Journal of Animal Science, 99: 185.

    Article  Google Scholar 

  • Kafle, D., Lee, J.H., Min, B.R., and Kouakou, B. 2021. Carcass and meat quality of goats supplemented with tannin-rich peanut skin. Journal of Agriculture and Food Research, 5: 100159.

    Article  CAS  Google Scholar 

  • Lamy, E., da Costa, G., Santos, R., Capela e Silva, F., Potes, J., Pereira, A., v Coelho, A., and Sales Baptista, E. 2011. Effect of condensed tannin ingestion in sheep and goat parotid saliva proteome. Journal of Animal Physiology and Animal Nutrition, 95 :304–312.

    Article  CAS  PubMed  Google Scholar 

  • Lauridsen, C., and Jensen, S.K. 2012. α-Tocopherol incorporation in mitochondria and microsomes upon supranutritional vitamin E supplementation. Genes and Nutrition, 7: 475–482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lean, I.J., de Ondarza, M.B., Sniffen, C.J., Santos, J.E.P., and Griswold, K.E. 2018. Meta-analysis to predict the effects of metabolizable amino acids on dairy cattle performance. Journal of Dairy Science, 101: 340–364.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, W.E., Harris, G.K., Sanders, T.H., White, B.L., and Dean, L.L. 2013. Antioxidant and Anti-Inflammatory Effects of Peanut Skin Extracts. Food Science and Nutrition, 04: 22–32.

    CAS  Google Scholar 

  • Lorenzo, J.M., Munekata, P.E.S., Sant’Ana, A.S., Carvalho, R.B., Barba, F.J., Toldrá, F., Mora, L., and Trindade, M.A. 2018. Main characteristics of peanut skin and its role for the preservation of meat products. Trends in Food Science and Technology, 77: 1–10.

    Article  CAS  Google Scholar 

  • McBrayer, A.C., Utley, P.R., Lowrey, R.S., and McCormick, W.C. 1983. Evaluation of Peanut Skins (Testa) as a Feed Ingredient for Growing-Finishing Cattle. Journal of Animal Science, 56: 173–183.

    Article  Google Scholar 

  • Min, B.R., Frank, A., Gurung, N., Lee, J.H., Joo, J.W., and Pacheco, W. 2019. Peanut skin in diet alters average daily gain, ruminal and blood metabolites, and carcass traits associated with Haemonchus contortus infection in meat goats. Animal Nutrition, 5: 278–285.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moher, D., Liberati, A., Tetzlaff, J., and Altman, D.G. 2009. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. British Medical Journal, 339: b2535–b2535.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nockels, C.F. 1996. Antioxidants improve cattle immunity following stress. Animal Feed Science and Technology, 62: 59–68.

    Article  CAS  Google Scholar 

  • O’Keefe, S.F., and Wang, H. 2006. Effects of peanut skin extract on quality and storage stability of beef products. Meat Science, 73: 278–286.

    Article  PubMed  Google Scholar 

  • Oliveira, A.S., Weinberg, Z.G., Ogunade, I.M., Cervantes, A.A.P., Arriola, K.G., Jiang, Y., Kim, D., Li, X., Gonçalves, M.C.M., Vyas, D., and Adesogan, A.T. 2017. Meta-analysis of effects of inoculation with homofermentative and facultative heterofermentative lactic acid bacteria on silage fermentation, aerobic stability, and the performance of dairy cows. Journal of Dairy Science, 100: 4587–4603.

    Article  CAS  PubMed  Google Scholar 

  • Palmer, J.M. 2010. The use of Peanut by-products in stocker cattle diets. Thesis, 9– 25.

  • Pannell, D., Kouakou, B., Terrill, T.H., Ogunade, I.M., Estrada-Reyes, Z.M., Bryant, V., Taiwo, G., Idowu, M., and Pech-Cervantes, A.A. 2022. Adding dried distillers grains with solubles influences the rumen microbiome of meat goats fed lespedeza or alfalfa-based diets. Small Ruminant Research, 2022.106747.

    Article  Google Scholar 

  • Patil, A.R., Goetsch, A.L., Galloway, D.L., and Forster, L.A. 1993. Intake and digestion by Holstein steer calves consuming grass hay supplemented with broiler litter. Animal Feed Science and Technology, 44: 251–263.

    Article  Google Scholar 

  • Pech-Cervantes, A.A., Ventura-Cordero, J., Capetillo-Leal, C.M., Torres-Acosta, J.F.J., and Sandoval-Castro, C.A. 2016. Relationship between intake of tannin-containing tropical tree forage, PEG supplementation, and salivary haze development in hair sheep and goats. Biochemical Systematics and Ecology, 68.

  • Pech-Cervantes, A.A., Terrill, T.H., Ogunade, I.M., and Estrada-Reyes, Z.M. 2021. Meta-analysis of the effects of dietary inclusion of sericea lespedeza (Lespedeza cuneata) forage on performance, digestibility, and rumen fermentation of small ruminants. Livestock Science, 253: 104707.

    Article  Google Scholar 

  • Pech-Cervantes A.A., Ferrarretto, L.F., and Ogunade I.M. 2022. Meta-analysis of the effects of the dietary application of exogenous alpha-amylase preparations on performance, nutrient digestibility, and rumen fermentation of lactating dairy cows. Journal of Animal Science, 100: 8. https://doi.org/10.1093/jas/skac189

  • Saito, C., Asano, S., Kato, C., Kobayashi, S., Musha, A., Kuribayashi, H., Moriguchi, S., Seto, Y., Kawashima, T., Kobayashi, M., Ishizaki, S., and Kajikawa, H. 2016. Nutritional values and antioxidative activities of whole peanuts and peanut skins for ruminant feeds. Animal Science Journal, 87: 54–60.

    Article  CAS  PubMed  Google Scholar 

  • Sauvant, D., Schmidely, P., Daudin, J.J., and St-Pierre, N.R. 2008. Meta-analyses of experimental data in animal nutrition. Animal, 2: 1203–1214.

    Article  CAS  PubMed  Google Scholar 

  • Sauvant, D., Letourneau-Montminy, M.P., Schmidely, P., Boval, M., Loncke, C., and Daniel, J.B. 2020. Review: Use and misuse of meta-analysis in Animal Science. Animal, 14: s207–s222.

    Article  CAS  PubMed  Google Scholar 

  • Shipp, A., Min, B., Gurung, N., Hyung, J., and McElhenney, W. 2017. The Effect of Tannin-Containing Peanut Skin Supplementation on Drug-resistant Haemonchus contortus Control in Meat Goat. Asian Journal of Advances in Agricultural Research, 3: 1–9.

    Article  Google Scholar 

  • Tipton, E. 2015. Small sample adjustments for robust variance estimation with meta-regression. Psychological Methods, 20: 375.

    Article  PubMed  Google Scholar 

  • Utley, P.R., and Hellwig, R.E. 1985. Feeding Value of Peanut Skins Added to Bermudagrass Pellets and Fed to Growing Beef Calves. Journal of Animal Science, 60: 329–333.

    Article  Google Scholar 

  • Viechtbauer, W. 2010. Conducting meta-analyses in R with the metafor. Journal of Statistical Software, 36: 1–48.

    Article  Google Scholar 

  • West, J.W., Hill, G.M., and Utley, P.R. 1993. Peanut Skins as a Feed Ingredient for Lactating Dairy Cows. Journal of Dairy Science, 76: 590–599.

    Article  Google Scholar 

Download references

Funding

This project was funded by the U.S. Department of Agriculture grant # 1022336.

Author information

Authors and Affiliations

Authors

Contributions

M.D.I.: data collection, data analysis, and writing.

A.A.P–C.: conceptualization, funding acquisition, data collection, data analysis, and writing.

G.T.: writing.

F.E.: writing.

I.M.O.: data analysis, and writing.

Z.M.E-R.: data analysis and writing.

T.H.T.: conceptualization, data analysis, and writing.

Corresponding author

Correspondence to Andres A. Pech-Cervantes.

Ethics declarations

Ethics approval

Not applicable.

Consent for publication

All the authors consent to publish the manuscript.

Conflict of interest

The authors declare no competing interests.

Disclaimer

The findings and conclusions contained within are those of the authors and do not necessarily reflect the positions or policies of the U.S. Department of Agriculture or U.S. Government.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 64 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idowu, M.D., Pech-Cervantes, A.A., Taiwo, G. et al. Effects of dietary supplementation of peanut skins (Arachis hypogaea) on performance, digestibility, and rumen fermentation of cattle: a meta-analysis. Trop Anim Health Prod 55, 385 (2023). https://doi.org/10.1007/s11250-023-03775-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11250-023-03775-1

Keywords

Navigation