Skip to main content
Log in

Assessing accuracy of genotype imputation in the Afrikaner and Brahman cattle breeds of South Africa

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

Imputation may be used to rescue genomic data from animals that would otherwise be eliminated due to a lower than desired call rate. The aim of this study was to compare the accuracy of genotype imputation for Afrikaner, Brahman, and Brangus cattle of South Africa using within- and multiple-breed reference populations. A total of 373, 309, and 101 Afrikaner, Brahman, and Brangus cattle, respectively, were genotyped using the GeneSeek Genomic Profiler 150 K panel that contained 141,746 markers. Markers with MAF ≤ 0.02 and call rates ≤ 0.95 or that deviated from Hardy Weinberg Equilibrium frequency with a probability of ≤ 0.0001 were excluded from the data as were animals with a call rate ≤ 0.90. The remaining data included 99,086 SNPs and 360 Afrikaner, 75,291 SNPs and 288 animals Brahman, and 97,897 SNPs and 99 Brangus animals. A total of 7986, 7002, and 7000 SNP from 50 Afrikaner and Brahman and 30 Brangus cattle, respectively, were masked and then imputed using BEAGLE v3 and FImpute v2. The within-breed imputation yielded accuracies ranging from 89.9 to 96.6% for the three breeds. The multiple-breed imputation yielded corresponding accuracies from 69.21 to 88.35%. The results showed that population homogeneity and numerical representation for within and across breed strategies, respectively, are crucial components for improving imputation accuracies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data cannot be shared with the public, due to the breed society’s still participating in the Beef Genomics Program of South Africa and under the process of accumulating and preliminarily analyzing their data for their breeding program purposes.

References

  • Bai, W.Y., Zhu, X.W., Cong, P.K., Zhang, X.J., Richards, J.B., and Zheng, H-F., 2019. Genotype imputation and reference panel: a systematic evaluation on haplotype size and diversity. Briefing in Bioinformatics, 1–12.

  • Berry, D.P., McClure, M.C., and Mullen, M.P., 2014. Within- and across-breed imputation of high-density genotypes in dairy and beef cattle from medium- and low-density genotypes. Journal of Animal Breeding and Genetics, 131, 165–172.

    Article  CAS  PubMed  Google Scholar 

  • Boichard, D., 2002. Pedig: A Fortran package for pedigree analysis suited for large populations. Proceedings of the 7th World Congress on Genetics Applied to Livestock Production, Montpellier, France. CD-ROM communication no. 28–13

  • Boison, S.A., Santos, D.J.A., Utsunomiya, A.H.T., Carvalheiro, R., Neves, H.R.H., O’Brien, A.M.P., Garcia, J.F., Sölkner, J., and da Silva, M.V.G.B., 2015. Strategies for single nucleotide polymorphism (SNP) genotyping to enhance genotype imputation in Gyr (Bos indicus) dairy cattle: Comparison of commercially available SNP chips. Journal of Dairy Science, 98(7).

  • Bouwman, A.C., Hickey, J.M., Calus, M.P.L., and Veerkamp, R.F., 2014. Imputation of non-genotyped individuals based on genotyped relatives: assessing the imputation accuracy of a real case scenario in dairy cattle. Genetics Selection Evolution, 46, 6.

    Article  Google Scholar 

  • Brøndum, R.F., Ma, P., Lund, M.S., and Su, G., 2012. Short communication: Genotype imputation within and across Nordic cattle breeds. Journal of Dairy Science, 95, 6795-6800.

    Article  PubMed  CAS  Google Scholar 

  • Browning, B.L., and Browning, S.R., 2009. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. American Journal of Human Genetics, 84, 210–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Browning, B.L., and Browning, S.R., 2016. Genotype imputation with millions of reference samples. American Journal of Human Genetics, 98, 116–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Browning, B.L., Zhou, Y., and Browning, S.R., 2018. A one-penny imputed genome from next generation reference panels. American Journal of Human Genetics, 103(3), 338–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Browning, S.R., and Browning, B.L., 2007. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. American Journal of Human Genetics, 81, 1084–1097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calus, M.P.L., de Haas, Y., and Veerkamp, R.F., 2013. Combining cow and bull reference populations to increase accuracy of genomic prediction and genome-wide association studies. Journal of Dairy Science, 96, 6703–6715.

    Article  CAS  PubMed  Google Scholar 

  • Chang, C.C., Chow, C.C., Tellier, L.C., Vattikuti, S., Purcell, S.M., and Lee, J.J., 2015. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience, 4(7).

  • Chassier, M., Barrey, E., Robert, C., Duluard, A., Danvy, S., and Ricard, A., 2018. Genotype imputation accuracy in multiple equine breeds from medium‐ to high‐density genotypes. Journal of Animal Breeding and Genetics, 135, 420–431.

    Article  CAS  PubMed  Google Scholar 

  • Cheung, C.Y.K., Thompson, E.A., and Wijsman, E.M., 2013. GIGI: An approach to effective imputation of dense genotypes on large pedigrees. American Journal of Human Genetics, 92, 504-516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cingolani, P., Platts, A., Wang, L.L., Coon, M., Nguyen, T., Wang, L., Land, S.J., Lu, X., and Ruden, D.M., 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly, 6(2), 80–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cirulli, E.T., and Goldstein, D.B., 2010. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nature Reviews Genetics, 11, 415–425.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, J.C., Kiss, R.S., Pertsemlidis, A., Marcel, Y.L., McPherson, R., and Hobbs, H.H., 2004. Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science, 305, 869–872.

    Article  CAS  PubMed  Google Scholar 

  • Farah, M.M., Fortes, M.R.S., Kelly, M., Porto-Neto, L.R., Meira, C.T., Carreño, L.O.D., Ricardo da Fonseca, R., and Moore, S.S., 2018. Accuracy of genomic selection predictions for hip height in Brahman cattle using different relationship matrices. Pesquisa Agropecuária Brasileira, 53(6), 717–726.

    Article  Google Scholar 

  • Friedrich, J., Antolın, R., Edwards, S.M., Sanchez-Molano, E., Haskell, M.J., Hickey, J.M., and Wiener, P., 2018. Accuracy of genotype imputation in Labrador retrievers. Animal Genetics, 49, 303-311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gebrehiwot, N.Z., Aliloo, H., Strucken, E.M., Marshall K, Al Kalaldeh, M., Missohou, A., and Gibson, J.P., 2021. Inference of ancestries and heterozygosity proportion and genotype imputation in West African cattle populations. Frontiers in Genetics, 12, 584355.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanotte, O., Bradley, D.G., Ochieng, J.W., Verjee, Y., Hill, E.W., and Rege, J.E.O., 2002. African pastoralism: genetic imprints of origins and migrations. Science, 296, 336-339.

    Article  CAS  PubMed  Google Scholar 

  • He, J., Guo, Y., Xu, J., Li, H., Fuller, A., Tait Jr, R.G.T., Wu, X.L., and Bauck, S., 2018. Comparing SNP panels and statistical methods for estimating genomic breed composition of individual animals in ten cattle breeds. BMC Genetics, 19, 56.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hozé, C., Fouilloux, M-N., Venot, E., Guillaume, F., Dassonneville, R., Fritz, S., Ducrocq, V., Phocas, F., Boichard, D., and Croiseau, P., 2013. High-density marker imputation accuracy in sixteen French cattle breeds. Genetics Selection Evolution, 45, 33.

    Article  Google Scholar 

  • Huang, Y., Maltecca, C., Cassady, J.P., Alexander, L.J., Snelling, W.M., and MacNeil, M.D., 2012. Effects of reduced panel, reference origin, and genetic relationship on imputation of genotypes in Hereford cattle. Journal of Animal Sciences, 90(12), 4203–4208.

    CAS  Google Scholar 

  • Korkuć, P., Arends, D., and Brockmann, G. A., 2019. Finding the optimal imputation strategy for small cattle populations. Frontiers in Genetics, 10, 52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koufariotis, L., Hayes, B.J., Kelly, M., Burns, M., Lyons, R., Stothard, P., Chamberlain, A.J., and Moore, S., 2018. Sequencing the mosaic genome of Brahman cattle identifies historic and recent introgression including polled. Nature, 8, 17761.

    CAS  Google Scholar 

  • Lashmar, S.F., Muchadeyi, F.C., and Visser, C., 2019. Genotype imputation as a cost-saving genomic strategy for South African Sanga cattle: A review. South African Journal of Animal Science, 49 (2).

  • Lashmar, S.F., Visser, C., Van Marle-Köster, E., and Muchadeyi, F.C., 2018. Genomic diversity and autozygosity within the SA Drakensberger beef cattle breed. Livestock Science, 212, 111–119.

    Article  Google Scholar 

  • Leigh, S.E.A., Foster, A.H., Whittall, R.A., Hubbart, C.S., and Humphries, S.E., 2008. Update and analysis of the University College London low density lipoprotein receptor familial hypercholesterolemia database. Annals of Human Genetics, 72, 485–498.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Willer, C., Sanna, S., and Abecasis, G., 2009. Genotype imputation. Annual Review of Genomics and Human Genetics, 10, 387–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, C-T., Deng, X., Fisher, V., Heard-Costa, N., Xu, H., Zhou, Y., Vasan, R.S., and Cupples, L.A., 2019. Revisit population-based and family-based genotype imputation. Nature, 9, 1800.

    Google Scholar 

  • Low, W.Y., Tearle, R., Liu, R., Koren, S., Rhie, A., Bickhart, D.M., Rosen, B.D., Kronenberg, Z.N., Kingan, S.B., Tseng, E., Thibaud-Nissen, F., Martin, F.J., Billis, K., Ghurye, J., Hastie, A.R., Lee, J., Pang, A.W.C., Heaton, M.P., Phillippy, A.M., Hiendleder, S., Smith, T.P.L., and Williams, J.L., 2020. Haplotype-resolved genomes provide insights into structural variation and gene content in Angus and Brahman cattle. Nature Communications, 11, 2071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luan, T., Woolliams, J.A., Ødegård, J., Dolezal, M., Roman-Ponce, S.I., Bagnato, A., and Meuwissen, T.H.E., 2012. The importance of identity-by-state information for the accuracy of genomic selection. Genetics Selection Evolution, 44, 28.

    Article  Google Scholar 

  • Lund, M.S., Su, G., Janss, L., Guldbrandtsen, B., and Rasmus Froberg Brøndum, R.F., 2014. Genomic evaluation of cattle in a multi-breed context. Livestock Science, 166, 101–110.

    Article  Google Scholar 

  • Makina, S.O., Taylor, J.F., van Marle-Köster, E., Muchadeyi, F.C., Makgahlela, M.L., MacNeil, M.D., and Maiwashe, A., 2015. Extent of linkage disequilibrium and effective population size in four South African Sanga cattle breeds. Frontier in Genetics, 6, 337.

    Google Scholar 

  • Makina, S.O., Whitacre, L.K., Decker, J.E., Taylor, J.F., MacNeil, M.D., Scholtz, M.M., van Marle‑Köster, E., Muchadeyi, F.C., Makgahlela, M.M., and Maiwashe, A., 2016. Insight into the genetic composition of South African Sanga cattle using SNP data from cattle breeds worldwide. Genetics Selection Evolution, 48, 88.

    Article  Google Scholar 

  • Manolio, T.A., Brooks, L.D., and Collins, F.S., 2008. A HapMap harvest of insights into the genetics of common disease. Journal of Clinical Investigation, 118, 1590–1605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manolio, T.A., Collins, F.S., Cox, N.J., Goldstein, D.B., Hindorff, L.A., Hunter, D.J., McCarthy, M.I., Ramos, E.M., Cardon, L.R., Chakravarti, A., Cho, J.H., Guttmacher, A.E., Augustine Kong, A., Kruglyak, L., Mardis, E., Rotimi, C.N., Slatkin, M., Valle, D., Whittemore, A.S., Boehnke, M., Clark, A.G., Eichler, E.E., Gibson, G., Haines, J.L., Mackay, T.F.C., McCarroll, S.A., and Visscher, P.M., 2009. Finding the missing heritability of complex diseases. Nature, 461, 747–753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchini, J., Howie, B., Myers, S., McVean, G., and Donnelly, P., 2007. A new multipoint method for genome-wide association studies by imputation of genotypes. Nature Genetics, 39(7), 906-913.

    Article  CAS  PubMed  Google Scholar 

  • McKay, S.D., Schnabel, R.D., Murdoch, B.M., Matukumalli, L.K., Aerts, J., Coppieters, W., Crews, D., Neto, E.D., Gill, C.A., Gao, C., Mannen, H., Stothard, P., Wang, Z., Van Tassell, C.P., Williams, J.L., Taylor, J.F., and Moore, S.S., 2007. Whole genome linkage disequilibrium maps in cattle. BMC Genetics, 8(74).

  • Nelson, S.C., Stilp, A.M., Papanicolaou, G.J., Taylor, K.D., Rotter, J.I., Thornton, T.A., and Laurie, C.C., 2016. Improved imputation accuracy in Hispanic/Latino populations with larger and more diverse reference panels: applications in the Hispanic community health study/study of Latinos (HCHS/SOL). Human Molecular Genetics, 25(15), 3245–3254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ott, J., Kamatani, Y., and Lathrop, M., 2011. Family-based designs for genome-wide association studies. Nature Reviews Genetics, 12, 465–474.

    Article  CAS  PubMed  Google Scholar 

  • Porto-Neto, L.R., Kijas, J.W., and Reverter, A., 2014. The extent of linkage disequilibrium in beef cattle breeds using high-density SNP genotypes. Animal Genetics, 45, 180-190.

    Article  CAS  PubMed  Google Scholar 

  • Qwabe, S.O., Van Marle-Köster, E., Maiwashe, A., and Muchadeyi, F.C., 2013. Evaluation of the BovineSNP50 genotyping array in four South African cattle populations. South African Journal of Animal Science, 43, 64–67.

    Google Scholar 

  • Rogers, A.R., 2014. How population growth affects linkage disequilibrium. Genetics, 197, 1329–1341.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rowan, T.N., Hoff, J.L., Crum, T.E., Taylor, J.F., Schnabel, R.D., and Decker, J.E., 2019. A multi-breed reference panel and additional rare variation maximizes imputation accuracy in cattle. Genetics Selection Evolution, 51, 77.

    Article  CAS  Google Scholar 

  • Sargolzaei, M., Chesnais, J.P., and Schenkel, F.S., 2014. A new approach for efficient genotype imputation using information from relatives. BMC Genomics, 15, 478.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sargolzaei, M., Schenkel, F.S., Jansen, G.B., and Schaeffer, L.R., 2008. Extent of linkage disequilibrium in Holstein cattle in North America. Journal of Dairy Science, 91, 2106–2117.

    Article  CAS  PubMed  Google Scholar 

  • Shi, S., Yuan, N., Yang, M., Du, Z., Wang, J.,Xin Sheng, X., Jiayan Wu, J., and Xiao, J., 2019. Comprehensive assessment of genotype imputation performance. Human Heredity, 83,107–116.

    Article  CAS  Google Scholar 

  • Silva, R.C., Neves, H., Hde Rezende, S., Queiroz, A., Sena, J.A.D., and Pimentel, E.C.G., 2010. Extent of linkage disequilibrium in Brazilian Gyr dairy cattle based on genotypes of AI sires for dense SNP markers. Proceedings of the 9th World Congress on Genetics Applied to Livestock Production, Leipzig, Germany.

  • Turner S., Armstrong L.L., Bradford Y., Carlson C.S., Crawford D.C., Crenshaw A.T., de Andrade M, Doheny K.F., Haines J.L., Hayes G., Jarvik G., Jiang L., Kullo I.J., Li R., Ling H., Manolio T.A., Matsumoto M., McCarty C.A., McDavid A.N., Mirel D.B., Paschall J.E., Pugh E.W., Rasmussen L.V., Wilke R.A., Zuvich R.L., and Ritchie M.D., 2011. Quality control procedures for genome-wide association studies. Current Protocols in Human Genetic. Chapter 1: Unit 1.19.

  • Ullah, E., Mall, R., Abbas, M.M., Kunji, K., Nato Jr, A.Q., Bensmail, H., Wijsman, E.M., and Saad, M., 2019. Comparison and assessment of family and population-based genotype imputation methods in large pedigrees. Genome Research, 29, 125–134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • United States Department of Agriculture., 1935. Yearbook of Agriculture, M.S. Eisenhower (ed). Government Printing Office, Washington, DC.

  • Wang, M.D., Dzama, K., Hefer, C.H., and Muchadeyi, F.C., 2015. Genomic population structure and prevalence of copy number variations in South African Nguni cattle. BMC Genomics, 16, 894.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu, M., Zhu, B., Wang, Y.H., Wu, Y., Xu, L., Guo, L.P., Yuan, Z.R., Zhang, L.P., Gao, X., Gao, H.J., Xu, S.Z., and Li, J.Y., 2013. Linkage disequilibrium estimation of Chinese beef Simmental cattle using high-density SNP panels. Asian Australasian Journal of Animal Sciences, 26(6), 772–779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zwane, A.A., Maiwashe, A., Makgahlela, M.L., Choudhury, A., Taylor, J.F., and Van Marle-Köster, E., 2016. Genome-wide identification of breed-informative single-nucleotide polymorphisms in three South African indigenous cattle breeds. South African Journal of Animal Science, 46, 302–312.

    Article  Google Scholar 

  • Zwane, A.A., Schnabel, R.D., Hoff, J., Choudhury, A., Makgahlela, M.L., Maiwashe, A., van Marle-Köster, E., and Taylor, J.F., 2019. Genome-wide SNP discovery in indigenous cattle breeds of South Africa. Frontiers in Genetics, 10, 273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

SM thanks the University of the Free State (UFS), the National Research Foundation (NRF), and the Technology Innovation Agency (TIA), an implementing agency of the Department of Science and Innovation for financial support. Without the financial support of the Red Meat Research and Development SA (RMRD SA) and the Beef Genomics Program (BGP), this research would not have been possible. The breed societies granting of permission to use the data is gratefully acknowledged.

Funding

This project received financial support from the Department of Science and Innovation (DSI), the Red Meat Research and Development South Africa (RMRD SA), and the South African Beef Genomics Program (BGP). We would also like to thank the southern African Brahman Breeders’ Society for their financial contribution towards the generation of genomic data.

Author information

Authors and Affiliations

Authors

Contributions

The article was drawn from the PhD thesis of SM. SM and MLM planned the study. SM implemented analyses of the data. FWCN and MLM supervised SM. MMS and MDM provided inputs on the interpretation of the results. MDM edited the article that was originally drafted by SM. All authors read and approved the final manuscript.

Corresponding author

Correspondence to S. Mdyogolo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

Approval of the study was granted by the Animal Ethics Committee (AEC) of the Agricultural Research Council of South Africa (APIC18/03).

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mdyogolo, S., MacNeil, M.D., Neser, F.W.C. et al. Assessing accuracy of genotype imputation in the Afrikaner and Brahman cattle breeds of South Africa. Trop Anim Health Prod 54, 90 (2022). https://doi.org/10.1007/s11250-022-03102-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11250-022-03102-0

Keywords

Navigation