Skip to main content
Log in

Morphological divergence in the West African shorthorn Lagune cattle populations from Benin

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

This study explored the potential role of agro-ecology in shaping the morphology of Lagune cattle population of Benin. A total of 708 adult Lagune cattle were sampled randomly from nine provenances in two agro-ecological zones (AEZs) and were assessed for eight qualitative and twelve linear body measurements. Data were analyzed using generalized linear model procedures (PROC GLM) followed by the multiple comparison of least square means (LSMEAN) according to the Tukey-Kramer method and multivariate analytical methods, including canonical discrimination analysis (CDA) and hierarchical ascendant classification. Irrespective of AEZ and sex, the body length (102.3 ± 9.31 cm) was greater than the wither height (93.1 ± 7.39 cm) and the body index smaller than 0.85. However, there were significant differences between the two AEZs for most of the measured morphometric and qualitative traits. Moreover, a male-biased sexual size dimorphism was recorded. The CDA based on only four basic body measurements (rump height, body length, heart girth, and ear length) and the calculated Mahalanobis distances suggest that the populations from the two AEZs are distinct and could be further considered ecotypes. Nevertheless, the overall moderate classification rate (70%) of the individual animals into their group of origin indicates interbreeding between the two populations. The pairwise Mahalanobis distances between provenances in the same AEZ were also significant. Together, these results provide supporting evidence for the existence of subdivisions in the Lagune cattle populations from South Benin. The high morphological diversity in the Lagune cattle recorded in the present study could serve as a starting point for the development of efficient selection and sound subpopulation management strategies but also for further phenotypic and genetic characterizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aboagye, G.S., Tawah, C.L. and Rege, J.E.O., 1994. Shorthorn cattle in West and Central Africa III. Physical adaptive and special genetic characteristics. World Animal Review, 78(1), 22–32.

    Google Scholar 

  • Ahozonlin, C.M., Koura, I.B. and Dossa, L.H., 2019. Determinants of crossbreeding practices by cattle farmers in South Benin, West Africa: implications for the sustainable use of the indigenous Lagune cattle population. Sustainable Agriculture Research 8(2):101–109. DOI:https://doi.org/10.5539/sar.v8n2p101

    Article  Google Scholar 

  • Ajmone-Marsan, P., Garcia, J.F. and Lenstra, J.A., 2010. On the origin of cattle: how aurochs became cattle and colonized the world. Evolutionary Anthropology, 19, 148–157. https://doi.org/10.1002/evan.20267

    Article  Google Scholar 

  • Alderson, G.L.H., 1999. The development of a system of linear measurements to provide an assessment of type and function of beef cattle. Animal Genetic Resources Information, 25, 45-55. DOI: https://doi.org/10.1017/S1014233900005782

    Article  Google Scholar 

  • Banerjee, S., Ahmed, M.B. and Tefere, G., 2014. Studies on morphometrical traits of Boran bulls reared on two feedlots in Southern Ethiopia. Animal Genetic Resources Information, 54, 53–63. doi:https://doi.org/10.1017/S2078633614000095.

    Article  Google Scholar 

  • Berihulay, H., Abied, A., He, X., Jiang, L. and Ma, Y., 2019. Adaptation Mechanisms of Small Ruminants to Environmental Heat Stress. Animals, 9, 75. doi :https://doi.org/10.3390/ani9030075.

    Article  Google Scholar 

  • Blackburn, H. D., Krehbiel, B., Ericsson, S. A., Wilson, C., Caetano, A. R. and Paiva, S. R., 2017. A fine structure genetic analysis evaluating ecoregional adaptability of a Bos taurus breed (Hereford). PloS one, 12(5), e0176474. doi: https://doi.org/10.1371/journal.pone.0176474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burrow, H. M., 2012. Importance of adaptation and genotype× environment interactions in tropical beef breeding systems. Animal, 6(5), 729-740. DOI: https://doi.org/10.1017/S175173111200002X.

    Article  CAS  PubMed  Google Scholar 

  • Chacón, E., Macedo, F., Velázquez, F., Paiva, S.R., Pineda, E. and McManus, C., 2011. Morphological measurements and body indices for Cuban Creole goats and their crossbreds. Revista Brasileira de Zootecnia, 40(8), 1671–1679. https://doi.org/10.1590/S1516-35982011000800007

    Article  Google Scholar 

  • Daikwo, S.I., Ogah, D.M., Amuda, A.J. and Dike, U.A., 2018. Prediction of Body Weight of Savanna Muturu Cattle (Bos brachyceros). Asian Journal of Research in Animal and Veterinary Sciences, 2(1), 1–6. Doi: https://doi.org/10.9734/AJRAVS/2018/43017.

    Article  Google Scholar 

  • de Jong, G. and Bijma, P., 2002. Selection and phenotypic plasticity in evolutionary biology and animal breeding. Livestock Production Science, 78(3), 195–214. https://doi.org/10.1016/S0301-6226(02)00096-9

    Article  Google Scholar 

  • DE-MAEP (Direction de l’Elevage-Ministère de l’Agriculture de l’Elevage et de la Pêche), 2001. Rapport national 2000. Cotonou, République du Bénin

    Google Scholar 

  • Desta, T.T., Ayalew, W. and Hedge, B.P., 2011. Breed and trait preferences of Sheko cattle keepers in southern Ethiopia. Tropical Animal Health and Production, 43, 851–856. https://doi.org/10.1007/s11250-010-9772-2

    Article  PubMed  Google Scholar 

  • Epstein, H., 1971. The origin of the domestic animals of Africa, Vol 1. New York, NY, USA, Pub. Africana.

  • Falconer, D.S. and Mackay, T.F.C., 1996. Introduction to quantitative genetics. Essex. UK: Longman Group.

  • FAO, 2011. Guidelines to Phenotypic characterization of Animal Genetic Resources. Food and Agriculture Organization of the United Nations, FAO, Rome.

    Google Scholar 

  • FAO, 2012. World livestock 2011: Livestock in food security. Food and Agriculture Organization of the United Nations, FAO, Rome.

    Google Scholar 

  • Felius, M., Beerling, M.L., Buchanan, D.S., Theunissen, B., Koolmees, P.A. and Lenstra, J.A., 2014. On the History of Cattle Genetic Resources. Diversity, 6, 705–750. Doi:https://doi.org/10.3390/d6040705.

    Article  Google Scholar 

  • Freeman, A.R., Meghen, C.M., Machugh, D.E., Loftus, R.T., Achukwi, M.D., Bado, A., Sauveroche, B. and Bradley, D.G., 2004. Admixture and diversity in West African cattle populations. Molecular Ecology, 13(11), 3477–3487. https://doi.org/10.1111/j.1365-294X.2004.02311.x

    Article  CAS  PubMed  Google Scholar 

  • Gantner, V., Mijić P., Kuterovac, K., Solićr, D. and Gantner, R., 2011. Temperature-humidity index values and their significance on the daily production of dairy cattle. Mljekarstvo, 61(1), 56–63. Accessed 12 May 2018 at https://hrcak.srce.hr/65205

    Google Scholar 

  • Gaughan, J.B., Sejian, V., Mader, T.L. and Dunshea, F.R., 2018. Adaptation strategies: ruminants. Animal Frontiers, 9(1), 47–53. https://doi.org/10.1093/af/vfy029

    Article  PubMed Central  Google Scholar 

  • Gautier, M., Flori, L., Riebler, A., Jaffrézic, F., Laloé, D., Gut, I., Moazami-Goudarzi, K. and Foulley, J.L., 2009. A whole genome Bayesian scan for adaptive genetic divergence in West African cattle. B M C genomics, 10(1), 550. https://doi.org/10.1186/1471-2164-10-550

    Article  CAS  Google Scholar 

  • Gbangboche, A.B., Alkoiret, T.I., Chrysostome, C.A.A.M., Salifou, S. and Hornick, J.L., 2011. Preweaning growth performance of Lagune cattle in Benin. International Journal of Livestock Production, 2(10), 159–165.

    Google Scholar 

  • Hanotte, O., Dessie, T. and Kemp S., 2010. Time to tap Africa's livestock genomes. Washington: Science, 328(5986), 1640–1641. Doi: https://doi.org/10.1126/science.1186254

    Article  CAS  Google Scholar 

  • Kabi, F., Masembe, C., Negrini, R. and Muwanika, V., 2015. Patterns of indigenous female cattle morphometric traits variations in Uganda: evidence for farmers’ selection to enhance agro-ecological fitness. Animal Genetic Resources Information, 56, 79–90. Doi: https://doi.org/10.1017/S2078633614000551.

    Article  Google Scholar 

  • Kolmodin, R., Strandberg, E., Jorjani, H. and Danell, B., 2003. Selection in the presence of genotype by environmental interaction: Response in environmental sensitivity. Journal of Animal Science, 76, 375-385. DOI: https://doi.org/10.1017/S1357729800058604

    Article  Google Scholar 

  • Koudandé, O.D., Dossou-Gbété, G., Mujibi, F., Kibogo, H., Mburu, D., Mensah, G.A., Hanotte, O. and Van Arendonk, J.A.M., 2009. Genetic diversity and zebu genes introgression in cattle population along the coastal region of the Bight of Benin. Animal Genetic Resources Information, 44, 45-55. DOI: https://doi.org/10.1017/S1014233900002856

    Article  Google Scholar 

  • Kristensen, T. N., Hoffmann, A. A., Pertoldi, C. and Stronen, A. V., 2015. What can livestock breeders learn from conservation genetics and vice versa?. Frontiers in genetics, 6, 38. https://doi.org/10.3389/fgene.2015.00038

    Article  PubMed  PubMed Central  Google Scholar 

  • Kubkomawa, I.H., Krumah, L.J., Etuk, E.B. and Okoli, I.C., 2015. Current pastoral cattle production situation in West Africa: A review. Dynamic Journal of Animal Science and Technology, 1(1), 1–17., http://www.journaldynamics.org/djast. Accessed 28 Nov 2016.

    Google Scholar 

  • Meghen, C., MacHugh, D.E. and Bradley, D.G., 1994. Genetic characterization and West African cattle. World Animal Review, 78(1), 59–66.

    Google Scholar 

  • Mwai, O., Hanotte, O., Kwon, Y. and Cho, S., 2015. African indigenous cattle: unique genetic resources in a rapidly changing world. Asian Australasian Journal of Animal Science, 28(7), 911–921. https://doi.org/10.5713/ajas.15.0002R.

    Article  Google Scholar 

  • Nyamushamba, G.B., Mapiye, C., Tada, O., Halimani, T.E. and Muchenje, V., 2017. Conservation of indigenous cattle genetic resources in Southern Africa’s smallholder areas: turning threats into opportunities - A review. Asian-Australasian Journal of Animal Sciences, 30(5), 603–621. https://doi.org/10.5713/ajas.16.0024

    Article  CAS  PubMed  Google Scholar 

  • Olson, T. A., 1999. Genetics of color variation. In: The genetics of cattle. Eds: Fries R and Ruvinsky A. Wallingford: CAB International, pp. 33-53.

  • Pace, J.E. and Wakeman, D.L., 2003. Determining the age of cattle by their teeth. CIR253. Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences. University of Florida, Gainesville, FL.

  • Parish, J.A. and Karisch, B.B., 2013. Estimating cattle age using dentition. Mississippi Extension Service of Department of Agriculture Mississippi State University, cooperating with U.S.

  • Poivey, J.P., Landais, E., Seitz, J.L. and Kouyaté, M., 1981. Détermination de l'âge des bovins par l'examen de la dentition. Revue d'Élevage et de Médecine Vétérinaire des Pays Tropicaux, 34, 55–62.

    CAS  PubMed  Google Scholar 

  • Porter, V., 2002. Mason's world dictionary of livestock breeds, types and varieties. 5th Edition, CABI Publishing, Wallingford.

    Book  Google Scholar 

  • Porter, V., Alderson, L., Hall, S.J. and Sponenberg, D.P., 2016. Mason's World Encyclopedia of Livestock Breeds and Breeding, 2 Volume Pack. CABI Publishing, Wallingford.

    Book  Google Scholar 

  • Porto-Neto, L.R., Reverter, A., Prayaga, K.C., Chan, E.K.F., Johnston, D.J., Hawken, R.J. and Barendse, W., 2014. The genetic architecture of climatic adaptation of tropical cattle. PLoS ONE, 9(11), e113284. https://doi.org/10.1371/journal.pone.0113284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rauw, W.M. and Gomez-Raya, L., 2015. Genotype by environment interaction and breeding for robustness in livestock. Frontiers in genetics, 6, 310, https://doi.org/10.3389/fgene.2015.00310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rege, J.E.O., 1999. The state of African cattle genetic resources I. Classification framework and identification of threatened and extinct breeds. Animal Genetic Resources Information, 25, 1-26. DOI: https://doi.org/10.1017/S1014233900003448

    Article  Google Scholar 

  • Rege, J.E.O. and Tawah, C.L., 1999. The state of African cattle genetic resources II: geographical distribution, characteristics and uses of present-day breeds and strains. Animal Genetic Resources Information, 26, 1-25. DOI: https://doi.org/10.1017/S1014233900001152

    Article  Google Scholar 

  • Salako, A.E., 2006. Application of morphological indices in the assessment of type and function in Sheep. International Journal of Morphology, 24(1), 13–18.

    Article  Google Scholar 

  • Segnalini, M., Nardone, A., Bernabucci, U., Vitali, A., Ronchi, B. and Lacetera, N., 2011. Dynamics of the temperature-humidity index in the Mediterranean basin. International Journal of Biometeorology, 55, 253–263. https://doi.org/10.1007/s00484-010-0331-3

    Article  PubMed  Google Scholar 

  • Segnalini, M., Bernabucci, U., Vitali, A., Nardone, A. and Lacetera, N., 2013. Temperature humidity index scenarios in the Mediterranean basin. International Journal of Biometeorology, 57, 451–458, Doi https://doi.org/10.1007/s00484-012-0571-5.

    Article  CAS  PubMed  Google Scholar 

  • Seré, C., van der Zijpp, A., Persley, G. and Rege, E., 2008. Dynamics of livestock production systems, drivers of change and prospects for animal genetic resources. Animal Genetic Resources Information, 42, 3-24. DOI: https://doi.org/10.1017/S1014233900002510

    Article  Google Scholar 

  • Sinsin, B., Kampmann D., (eds)., 2010: Biodiversity Atlas of West Africa, Volume I: Benin. Cotonou and Frankfurt/Main

  • Szabolcs, B., Nagy, B., Nagy, L. and Kiss, B., 2007. Comparison of body measurements of beef cows of different breeds. Archiv fur Tierzucht, Dummerstorf, 50(4), 363–3. https://doi.org/10.5194/aab-50-363-2007.

    Article  Google Scholar 

  • Tenagne, A., Mekuriaw, G. and Kumar, D., 2016. Phenotypic Characterization of Indigenous Cattle Populations in West Gojjam Administrative Zones, Amhara National Regional State. Ethiopia. Journal of Life Science and Biomedicine, 6(6), 127–138. www.jlsb.science-line.com. Accessed 24 Feb 2017.

  • Terefe, E., Haile, A., Mulatu, W., Dessie, T. and Mwai O., 2015. Phenotypic characteristics and trypanosome prevalence of Mursi cattle breed in the Bodiand Mursi districts of South Omo Zone, southwest Ethiopia. Tropical Animal Health and Production, 47, 485–493. https://doi.org/10.1007/s11250-014-0746-7.

    Article  PubMed  Google Scholar 

  • Traoré, A., Koudandé, D.O., Fernandez, I., Soudré, A., Granda, V., Alvarez, I., Diarra, S., Diarra, F., Kaboré, A., Sanou, M., Tamboura, H.H. and Goyache, F., 2015. Geographical assessment of body measurements and qualitative traits in West African cattle. Tropical Animal Health and Production, 47(8), 1505–1513. Doi: https://doi.org/10.1007/s11250-015-0891-7

    Article  PubMed  Google Scholar 

  • Traoré, A., Koudandé, O.D., Fernández, I., Soudré, A., Álvarez, I., Diarra, S., Diarra, F., Kaboré, A., Sanou, M., Tamboura, H.H. and Goyache, H., 2016. Multivariate characterization of morphological traits in West African cattle sires. Archives Animal Breeding, 59, 337–344. Doi: https://doi.org/10.5194/aab-59-337-2016.

    Article  Google Scholar 

  • Weyl, P.S.R. and Coetzee, J.A., 2016. Morphological variations in southern African populations of Myriophyllum spicatum: Phenotypic plasticity or local adaptation? South African Journal of Botany, 103, 241–246. https://doi.org/10.1016/j.sajb.2015.07.016

    Article  Google Scholar 

  • Yakubu, A., Hingir, A.V. and Abdullah, A.R., 2018. Multivariate analysis of sexual dimorphism in the morphometric traits of Muturu cattle in North Central Nigeria. Nigerian Journal of Genetics, 32, 8–15.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to all the cattle farmers for their valuable help and collaboration during the field work.

Funding

This study was funded by the German Volkswagen Foundation (grant number Az 89367).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Hippolyte Dossa.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical standards

The manuscript does not contain clinical studies or patient data.

Informed consent

Informed consent was obtained from all individual participant Lagune Cattle farmers included in this study.

Statement of animal rights

Body measurements and morphological description were obtained with the permission of the farmers. The measured animals were managed by the farmers themselves. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahozonlin, M.C., Dossa, L.H., Dahouda, M. et al. Morphological divergence in the West African shorthorn Lagune cattle populations from Benin. Trop Anim Health Prod 52, 803–814 (2020). https://doi.org/10.1007/s11250-019-02071-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11250-019-02071-1

Keywords

Navigation