Skip to main content
Log in

Periodic vicissitudes of different concentrations of a developed prototype killed S. aureus mastitis vaccine on immune modulators, mediators and immunoglobulins in cows

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

Mastitis is the inflammation of the mammary gland due to microbial infiltration causing a reduced mammary function. This study aims at developing a vaccine using Malaysian local isolate of Staphylococcus aureus and evaluating serum amyloid A, Interleukin-10, IgM and IgG responses periodically. Four bacterin concentrations (106, 107, 108 and 109 cfu/ml of the local isolate of S. aureus) were adjuvanted with aluminium potassium sulphate. Thirty cows grouped into 4 treatment groups (G-) were vaccinated (2 ml) intramuscularly, with a fifth G-A as control. The mean concentration (MC) of serum amyloid A (SAA) was significantly different (sig-d) (p ˂ 0.05) in G-D at 0 h post vaccination (PV), 3 h PV, 24 h PV, weeks 1, 2, 3 and 4 PV (6-, 15-, 5-, 12-, 11-, 4- and 11-fold increased (FI) respectively). The MC of serum amyloid A was also sig-d in G-E at 0 h PV, weeks 1, 2 and 4 PV (3, 8, 5 and 8 FI respectively). The MC of IL-10 was sig-d in G-D and C at 3 h PV and week 2 PV (5 and 2 FI respectively). The IgM MC was sig-d in G-B and C at 3 h PV (5 and 6 FI respectively), at 24 h PV (5 and 9 FI respectively), at week 3 PV(2 and 2 FI respectively) and week 4 PV (3 and 4 FI respectively). The MC of IgG was sig-d in G-E at 0 h, 3 h and week 3 PV(5, 6 and 2 FI respectively) and in G-D at weeks 1–4 (3, 3, 3 and 5 FI respectively). In conclusion, elevated levels of SAA, IgG and IL-10 in G-D(108) informed our choice of best dosage which can be used to evoke immunity in cows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdullah, F. F. J., Mohammed, K., Abba, Y., Adamu, L., Osman, A. Y., Tijjani, A., Saharee, A. A., & Haron, A. W. (2014). Retained placenta associated with Escherichia coli infection in a dairy cow. International Journal of Livestock Research, 4(2), 120–125.

    Article  Google Scholar 

  • Ali, O. S., Adamu, L., Abdullah, F. F. J., Ilyasu, Y., Abba, Y., Hamzah, H. B., Mohd-Azmi, M., Haron, A. W. B., & Saad, M. Z. B. (2015). Alterations in interleukin-1 [Beta] and interleukin-6 in mice inoculated through the oral routes using graded doses of P. multocida Type b: 2 and its Lipopolysaccharide. American Journal of Animal and Veterinary Sciences, 10(1), 1.

  • Armstrong, L., Jordan, N., & Millar, A. (1996). Interleukin 10 (IL-10) regulation of tumour necrosis factor alpha (TNF-alpha) from human alveolar macrophages and peripheral blood monocytes. Thorax, 51(2), 143–149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bannerman, D. D., Paape, M. J., Lee, J.-W., Zhao, X., Hope, J. C., & Rainard, P. (2004). Escherichia coli and Staphylococcus aureus elicit differential innate immune responses following intramammary infection. Clinical and diagnostic laboratory immunology, 11(3), 463–472.

    PubMed  PubMed Central  Google Scholar 

  • Barrio, M., Rainard, P., Gilbert, F., & Poutrel, B. (2003). Assessment of the opsonic activity of purified bovine sIgA following intramammary immunization of cows with Staphylococcus aureus. Journal of Dairy Science, 86(9), 2884–2894.

    Article  CAS  PubMed  Google Scholar 

  • Bharathan, M., & Mullarky, I. K. (2011). Targeting mucosal immunity in the battle to develop a mastitis vaccine. J Mammary Gland Biol Neoplasia, 16(4), 409–419. https://doi.org/10.1007/s10911-011-9233-1

    Article  PubMed  Google Scholar 

  • Boerhout, E., Vrieling, M., Benedictus, L., Daemen, I., Ravesloot, L., Rutten, V., Nuijten, P., Van Strijp, J., Koets, A., & Eisenberg, S. (2015). Immunization routes in cattle impact the levels and neutralizing capacity of antibodies induced against S. aureus immune evasion proteins. Veterinary research, 46(1), 115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camussone, C. M., Veaute, C. M., Pujato, N., Morein, B., Marcipar, I. S., & Calvinho, L. F. (2014). Immune response of heifers against a Staphylococcus aureus CP5 whole cell and lysate vaccine formulated with ISCOM Matrix adjuvant. Res Vet Sci, 96(1), 86–94. https://doi.org/10.1016/j.rvsc.2013.10.004

    Article  CAS  PubMed  Google Scholar 

  • Chang, B. S., Bohach, G. A., Lee, S.-U., Davis, W. C., Fox, L. K., Ferens, W. A., Seo, K. S., Koo, H. C., Kwon, N. H., & Park, Y. H. (2005). Immunosuppression by T regulatory cells in cows infected with Staphylococcal superantigen. Journal of Veterinary Science, 6(3).

  • Chung, E. L. T., Abdullah, F. F. J., Adamu, L., Marza, A. D., Ibrahim, H. H., Zamri-Saad, M., Haron, A. W., Saharee, A. A., Lila, M. A. M., & Omar, A. R. (2015). Clinico-pathology, hematology, and biochemistry responses toward Pasteurella multocida Type B: 2 via oral and subcutaneous route of infections. Veterinary world, 8(6), 783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colque-Navarro, P., Palma, M., Söderquist, B., Flock, J.-I., & Möllby, R. (2000). Antibody responses in patients with staphylococcal septicemia against two Staphylococcus aureus fibrinogen binding proteins: clumping factor and an extracellular fibrinogen binding protein. Clinical and diagnostic laboratory immunology, 7(1), 14–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ezzat Alnakip, M., Quintela-Baluja, M., Böhme, K., Fernández-No, I., Caamaño-Antelo, S., Calo-Mata, P., & Barros-Velázquez, J. (2014). The immunology of mammary gland of dairy ruminants between healthy and inflammatory conditions. Journal of veterinary medicine, 2014.

  • Gerardi, G., Bernardini, D., Elia, C. A., Ferrari, V., Iob, L., & Segato, S. (2009). Use of serum amyloid A and milk amyloid A in the diagnosis of subclinical mastitis in dairy cows. Journal of dairy research, 76(4), 411–417.

    Article  CAS  PubMed  Google Scholar 

  • Gill, J., Pacan, J., Carson, M., Leslie, K., Griffiths, M., & Sabour, P. (2006). Efficacy and pharmacokinetics of bacteriophage therapy in treatment of subclinical Staphylococcus aureus mastitis in lactating dairy cattle. Antimicrobial agents and chemotherapy, 50(9), 2912–2918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grönlund, U., Hultén, C., Eckersall, P. D., Hogarth, C., & Waller, K. P. (2003). Haptoglobin and serum amyloid A in milk and serum during acute and chronic experimentally induced Staphylococcus aureus mastitis. Journal of dairy research, 70(4), 379–386.

    Article  CAS  PubMed  Google Scholar 

  • Hambali, I., Bhutto, K., Jesse, F., Lawan, A., Odhah, M., Wahid, A., Azmi, M. M., Zakaria, Z., Arsalan, M., & Muhammad, N. (2018). Clinical responses in cows vaccinated with a developed prototype killed Staphylococcus aureus mastitis vaccine. Microbial pathogenesis.

  • Haron, A. W., Abdullah, F. F. J., Tijjani, A., Abba, Y., Adamu, L., Mohammed, K., Amir, A. M. M., Sadiq, M. A., & Lila, M. A. M. (2014). The use of Na+ and K+ ion concentrations as potential diagnostic indicators of subclinical mastitis in dairy cows. Veterinary world, 7(11).

  • Heegaard, P. M., Godson, D. L., Toussaint, M. J., Tjørnehøj, K., Larsen, L. E., Viuff, B., & Rønsholt, L. (2000). The acute phase response of haptoglobin and serum amyloid A (SAA) in cattle undergoing experimental infection with bovine respiratory syncytial virus. Veterinary immunology and immunopathology, 77(1), 151–159.

    Article  CAS  PubMed  Google Scholar 

  • Herr, M., Bostedt, H., & Failing, K. (2011). IgG and IgM levels in dairy cows during the periparturient period. Theriogenology, 75(2), 377–385.

    Article  CAS  PubMed  Google Scholar 

  • Hessle, C., Andersson, B., & Wold, A. E. (2000). Gram-positive bacteria are potent inducers of monocytic interleukin-12 (IL-12) while gram-negative bacteria preferentially stimulate IL-10 production. Infection and immunity, 68(6), 3581–3586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hogan, J., & Smith, K. L. (2003). Coliform mastitis. Veterinary research, 34(5), 507–519.

    Article  PubMed  Google Scholar 

  • Jacobsen, S., Niewold, T. A., Kornalijnslijper, E., Toussaint, M., & Gruys, E. (2005). Kinetics of local and systemic isoforms of serum amyloid A in bovine mastitic milk. Veterinary immunology and immunopathology, 104(1), 21–31.

    Article  CAS  PubMed  Google Scholar 

  • Jesse. (2014). Clinical mastitis associated with Arcanobacterium spp. infection in a Boer cross Goat. J. Vet. Adv, 4(2), 405–408.

    Google Scholar 

  • Jesse, F. F. A., Abba, Y., Tijjani, A., Sadiq, M. A., Konto, M., Adamu, L., Wahid, A. H., MohdAzmi, M. L., Eric, L. T. C., & Ab Rahman, M. F. (2016a). Gonado-hypophyseal lesions and reproductive hormonal changes in Brucella melitensis-infected mice and its lipopolysaccharides (LPSs). Comparative Clinical Pathology, 25(1), 31–36.

    Article  CAS  Google Scholar 

  • Jesse, F. F. A., Bitrus, A. A., Abba, Y., Sadiq, M. A., Chung, E. L. T., Hambali, I. U., Lila, M. A. M., & Haron, A. W. (2016b). Severe case of bilateral gangrenous mastitis in a doe: a case report on clinical management. Int. J. Livest. Res, 6(8), 55–59.

    Article  Google Scholar 

  • Jesse, F. F. A., Ibrahim, H. H., Abba, Y., Chung, E. L. T., Marza, A. D., Mazlan, M., Zamri-Saad, M., Omar, A. R., Zakaria, M. Z. A. B., & Saharee, A. A. (2017). Reproductive hormonal variations and adenohypophyseal lesions in pre-pubertal buffalo heifers inoculated with Pasteurella multocida type B: 2 and its immunogens. BMC veterinary research, 13(1), 88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson, T. R., & Case, C. L. (2015). Laboratory experiments in microbiology: Pearson.

  • Kamphuis, C., Dela Rue, B. T., & Eastwood, C. R. (2016). Field validation of protocols developed to evaluate in-line mastitis detection systems. J Dairy Sci, 99(2), 1619–1631. https://doi.org/10.3168/jds.2015-10253

    Article  CAS  PubMed  Google Scholar 

  • Kociņa, I., Antāne, V., & Lūsis, I. (2012). The concentration of immunoglobulins A, G, and M in cow milk and blood in relation with cow seasonal keeping and pathogens presence in the udder. Proceedings of the Latvia University of Agriculture, 27(1), 44–53.

    Article  Google Scholar 

  • Kovačević-Filipović, M., Ilić, V., Vujčić, Z., Dojnov, B., Stevanov-Pavlović, M., Mijačević, Z., & Božić, T. (2012). Serum amyloid A isoforms in serum and milk from cows with Staphylococcus aureus subclinical mastitis. Veterinary immunology and immunopathology, 145(1), 120–128.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J.-W., O’Brien, C. N., Guidry, A. J., Paape, M. J., Shafer-Weaver, K. A., & Zhao, X. (2005). Effect of a trivalent vaccine against Staphylococcus aureus mastitis lymphocyte subpopulations, antibody production, and neutrophil phagocytosis, Canadian journal of veterinary research, 69(1), 11.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leitner, G., Yadlin, B., Glickman, A., Chaffer, M., & Saran, A. (2000). Systemic and local immune response of cows to intramammary infection with Staphylococcus aureus. Research in Veterinary Science, 69(2), 181–184.

    Article  CAS  PubMed  Google Scholar 

  • Marimuthu M, Abdullah, F. F. J., Mohammed, K., Poshpum, S. S., Adamu, L., Osman, A. Y., Osman, A. Y., Abba, Y., Tijjani, A., Marimuthu, M., Abdullah, F. F. J., Mohammed, K., Adamu, L., Abba, Y., & Tijjani, A. (2014a). Prevalence and antimicrobial resistance assessment of subclinical mastitis in milk samples from selected dairy farms. Am. J. Anim. Vet. Sci. American Journal of Animal and Veterinary Sciences, 9(1), 65–70.

    Article  Google Scholar 

  • Marimuthu, M., Abdullah, F. F. J., Mohammed, K., Sangeetha, D., Poshpum, O. S., Adamu, L., Osman, A. Y., Abba, Y., & Tijjani, A. (2014b). Prevalence and antimicrobial resistance assessment of subclinical mastitis in milk samples from selected dairy farms. American Journal of Animal and Veterinary Sciences, 9(1), 65.

    Article  Google Scholar 

  • Marza, A. D., Abdullah, F. F. J., Ahmed, I. M., Chung, E. L. T., Ibrahim, H. H., Zamri-Saad, M., Omar, A. R., Bakar, M. Z. A., Saharee, A. A., & Haron, A. W. (2015). Involvement of nervous system in cattle and buffaloes due to Pasteurella multocida B: 2 infection: A review of clinicopathological and pathophysiological changes. Journal of Advanced Veterinary and Animal Research, 2(3), 252–262.

    Article  Google Scholar 

  • Merle, N. S., Church, S. E., Fremeaux-Bacchi, V., & Roumenina, L. T. (2015). Complement system part I–molecular mechanisms of activation and regulation. Frontiers in immunology, 6.

  • Mohi-ud-din, M., Mudasser, H., Zahid, I., & Iftikhar, H. (2014). Immune response of rabbits to hemorrhagic septicemia vaccine formulations adjuvanted with montanide ISA-206, paraffin oil and alum. Asian J Agri Biol, 2(2), 161–167.

    Google Scholar 

  • Morris, D. G., Waters, S. M., McCarthy, S. D., Patton, J., Earley, B., Fitzpatrick, R., Murphy, J. J., Diskin, M. G., Kenny, D. A., Brass, A., & Wathes, D. C. (2009). Pleiotropic effects of negative energy balance in the postpartum dairy cow on splenic gene expression: repercussions for innate and adaptive immunity. Physiol Genomics, 39(1), 28–37. https://doi.org/10.1152/physiolgenomics.90394.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Othman, N., & Bahaman, A. R. (2005). Prevalence of subclinical mastitis and antibiotic resistant bacteria in three selected cattle farms in Serdang, Selangor and Kluang, Johor. Jurnal Veterinar Malaysia, 17(1), 27–31.

    Google Scholar 

  • Pareek, R., Wellnitz, O., Van Dorp, R., Burton, J., & Kerr, D. (2005). Immunorelevant gene expression in LPS-challenged bovine mammary epithelial cells. J Appl Genet, 46(2), 171–177.

    PubMed  Google Scholar 

  • Paulrud, C. O. (2005). Basic concepts of the bovine teat canal. Vet Res Commun, 29(3), 215–245.

    Article  CAS  PubMed  Google Scholar 

  • Riollet, C., Rainard, P., & Poutrel, B. (2000). Cells and cytokines in inflammatory secretions of bovine mammary gland. Adv Exp Med Biol, 480, 247–258. https://doi.org/10.1007/0-306-46832-8_30

    Article  CAS  PubMed  Google Scholar 

  • Roslindawani, M., Syafiqah, A., Jesse, F., Effendy, A., & Zamri-Saad, M. (2016). Recombinant caseous lymphadenitis vaccine with palm oil as adjuvant enhances the humoral and cell-mediated immune responses in rat model. J Anim Heal Prod, 4, 23.

    Google Scholar 

  • Sampimon, O., Zadoks, R. N., De Vliegher, S., Supré, K., Haesebrouck, F., Barkema, H., Sol, J., & Lam, T. J. (2009). Performance of API Staph ID 32 and Staph-Zym for identification of coagulase-negative staphylococci isolated from bovine milk samples. Veterinary microbiology, 136(3), 300–305.

    Article  CAS  PubMed  Google Scholar 

  • Santman-Berends, I. M., Swinkels, J. M., Lam, T. J., Keurentjes, J., & van Schaik, G. (2016). Evaluation of udder health parameters and risk factors for clinical mastitis in Dutch dairy herds in the context of a restricted antimicrobial usage policy. J Dairy Sci, 99(4), 2930–2939. https://doi.org/10.3168/jds.2015-10398

    Article  CAS  PubMed  Google Scholar 

  • Shamila-Syuhada, A. K., Rusul, G., Wan-Nadiah, W. A., & Chuah, L.-O. (2016). Prevalence and antibiotics resistance of Staphylococcus aureus isolates isolated from raw milk obtained from small-scale dairy farms in Penang, Malaysia. Pakistan Veterinary J, 36(1), 98–102.

    CAS  Google Scholar 

  • Shitandi, A., & Kihumbu, G. (2004). Assessment of the California mastitis test usage in smallholder dairy herds and risk of violative antimicrobial residues. Journal of Veterinary Science, 5(1), 5–9.

    Article  PubMed  Google Scholar 

  • Shkreta, L., Talbot, B. G., Diarra, M. S., & Lacasse, P. (2004). Immune responses to a DNA/protein vaccination strategy against Staphylococcus aureus induced mastitis in dairy cows. Vaccine, 23(1), 114–126.

    Article  CAS  PubMed  Google Scholar 

  • Siti Zubaidah, R., Mohd Shah, A., Fatimah, C., Rosnani, A., Hajaraih, S., Iskandar, C., Hassan, L., Dhaliwal, G., Yusoff, R., & Omar, A. (2005). Prevalence and aetiology of subclinical caprine mastitis in five selected farms in Selangor. Paper presented at the Harmonising HALAL practices and food safety from farm to table. Proceedings of the 17th Veterinary Association Malaysia Congress in conjuction with Malaysia International Halal Showcase (MIHAS) 2005; 27–30 July 2005.

  • Sordillo, & Streicher. (2002). Mammary gland immunity and mastitis susceptibility. Journal of mammary gland biology and neoplasia, 7(2), 135–146.

    Article  PubMed  Google Scholar 

  • Waller, K. P., Persson, Y., Nyman, A.-K., & Stengärde, L. (2014). Udder health in beef cows and its association with calf growth. Acta Veterinaria Scandinavica, 56(1), 1.

    Article  Google Scholar 

  • Wang, H., Yu, G., Yu, H., Gu, M., Zhang, J., Meng, X., Liu, Z., Qiu, C., & Li, J. (2015). Characterization of TLR2, NOD2, and related cytokines in mammary glands infected by Staphylococcus aureus in a rat model. Acta Veterinaria Scandinavica, 57(1), 25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida, K. 1980.Vaccine (Google Patents.

Download references

Acknowledgements

The authors wish to appreciate the management and staff of the Department of Clinical studies, Faculty of Veterinary Medicine, University Putra Malaysia (UPM) for their cooperation throughout the duration of the experimental trial.

Funding statement

The publication of this article was funded by Universiti Putra Malaysia and the grant number to this research is 9490500.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Idris Umar Hambali or Faez Firdaus Jesse Bin Abdullah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The ethical approval for this vaccine trial was issued by the Institutional Animal Care and use committee (IACUC) of the Universiti Putra Malaysia referenced as UPM/IACUC/AUP- R072/2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hambali, I.U., Abdullah, F.F.J.B., Bhutto, K.R. et al. Periodic vicissitudes of different concentrations of a developed prototype killed S. aureus mastitis vaccine on immune modulators, mediators and immunoglobulins in cows. Trop Anim Health Prod 51, 781–789 (2019). https://doi.org/10.1007/s11250-018-1755-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11250-018-1755-8

Keywords

Navigation