Skip to main content
Log in

A Molecular-Scale Analysis of Pressure-Dependent Sliding Shear Stresses

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Stress-modified activated processes are analyzed using a model first proposed by Evans and Polanyi that uses transition-state theory to calculate the effect of some perturbation, described by an intensive variable, \(I\), on the reaction rate. They suggested that the rate constant depended primarily on the equilibrium between the transition state and the reactant, which, in turn, depends on the effect of the perturbation \(I\) on the Gibbs free energy, \(G=U-TS+IC\), where \(C\) is a variable conjugate to \(I\). For example, in the case of a hydrostatic pressure \(P\), the conjugate variable is the volume, \(-V\). This allows a pressure-dependent rate to be calculated from the equilibrium constant between the reactant and transition state. Advantages to this approach are that the analysis is independent of the pathway between the two states and can simultaneously include the effect of multiple perturbations. These ideas are applied to the Prandtl–Tomlinson model, which analyses the force-induced transition rate over a surface energy barrier. The Evans–Polanyi analysis is independent of the shape of the sliding potential and merely requires the locations of the initial and transition states. It also allows the effects of both normal and shear stresses to be analyzed to identify the molecular origins of the well-known pressure-dependent shear stress: \(\tau ={\tau }_{0}+{\mu }_{L}P\), where \({\tau }_{0}\) is a pressure-independent stress. The analysis reveals that \({\mu }_{L}\) depends on the molecular corrugation of the potential and that \({\tau }_{0}\) is velocity dependent, in accord with an empirical equation proposed by Briscoe and Evans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data sharing not applicable since the article describes entirely theoretical research.

References

  1. Prandtl, L.: Ein Gedankenmodell zur kinetischen Theorie der festen Körper. Z. Angew. Math. Mech. 8, 85 (1928)

    Article  Google Scholar 

  2. Furlong, O.J., Manzi, S.J., Pereyra, V.D., Bustos, V., Tysoe, W.T.: Monte Carlo simulations for Tomlinson sliding models for non-sinusoidal periodic potentials. Tribol. Lett. 39, 177–180 (2010)

    Article  CAS  Google Scholar 

  3. Müser, M.: Velocity dependence of kinetic friction in the Prandtl–Tomlinson model. Phys. Rev. B 84, 125419 (2011)

    Article  Google Scholar 

  4. Gnecco, E., Roth, R., Baratoff, A.: Analytical expressions for the kinetic friction in the Prandtl–Tomlinson model. Phys. Rev. B 86, 035443 (2012)

    Article  Google Scholar 

  5. Furlong, O., Manzi, S., Martini, A., Tysoe, W.: Influence of potential shape on constant-force atomic-scale sliding friction models. Tribol. Lett. 60, 1–9 (2015)

    Article  Google Scholar 

  6. Eyring, H.: Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283–291 (1936)

    Article  CAS  Google Scholar 

  7. Kauzmann, W., Eyring, H.: The viscous flow of large molecules. J. Am. Chem. Soc. 62, 3113–3125 (1940)

    Article  CAS  Google Scholar 

  8. Tysoe, W.: On stress-induced tribochemical reaction rates. Tribol. Lett. 65, 48 (2017)

    Article  Google Scholar 

  9. Spikes, H., Tysoe, W.: On the commonality between theoretical models for fluid and solid friction, wear and tribochemistry. Tribol. Lett. 59, 1–14 (2015)

    Article  CAS  Google Scholar 

  10. Jacobs, T.D.B., Carpick, R.W.: Nanoscale wear as a stress-assisted chemical reaction. Nat. Nanotechnol. 8, 108–112 (2013)

    Article  CAS  Google Scholar 

  11. Manzi, S., Tysoe, W., Furlong, O.: Temperature dependences in the Tomlinson/Prandtl model for atomic sliding friction. Tribol. Lett. 55, 363–369 (2014)

    Article  Google Scholar 

  12. Manzi, S.J., Carrera, S.E., Furlong, O.J., Kenmoe, G.D., Tysoe, W.T.: Prandtl–Tomlinson-type models for molecular sliding friction. Tribol. Lett. 69, 147 (2021)

    Article  Google Scholar 

  13. Johnson, K.L., Tevaarwerk, J.L.: Shear behaviour of elastohydrodynamic oil films. Proc. R. Soc. Lond. A. 356, 215–236 (1977)

    Article  CAS  Google Scholar 

  14. Stearn, A.E., Eyring, H.: Pressure and rate processes. Chem. Rev. 29, 509–523 (1941)

    Article  CAS  Google Scholar 

  15. Subramanian, G., Mathew, N., Leiding, J.: A generalized force-modified potential energy surface for mechanochemical simulations. J. Chem. Phys. 143, 134109 (2015)

    Article  Google Scholar 

  16. Konda, S.S.M., Brantley, J.N., Bielawski, C.W., Makarov, D.E.: Chemical reactions modulated by mechanical stress: extended Bell theory. J. Chem. Phys. 135, 164103–164108 (2011)

    Article  Google Scholar 

  17. Avdoshenko, S.M., Makarov, D.E.: Reaction coordinates and pathways of mechanochemical transformations. J. Phys. Chem. B 120, 1537–1545 (2016)

    Article  CAS  Google Scholar 

  18. Quapp, W., Bofill, J.M., Ribas-Ariño, J.: Analysis of the acting forces in a theory of catalysis and mechanochemistry. J. Phys. Chem. A 121, 2820–2838 (2017)

    Article  CAS  Google Scholar 

  19. Quapp, W., Bofill, J.M.: Mechanochemistry on the Müller-Brown surface by Newton trajectories. Int. J. Quantum Chem. 118, e25522 (2018)

    Article  Google Scholar 

  20. Pechukas, P.: On simple saddle points of a potential surface, the conservation of nuclear symmetry along paths of steepest descent, and the symmetry of transition states. J. Chem. Phys. 64, 1516–1521 (1976)

    Article  CAS  Google Scholar 

  21. Miller, W.H., Handy, N.C., Adams, J.E.: Reaction path Hamiltonian for polyatomic molecules. J. Chem. Phys. 72, 99–112 (1980)

    Article  CAS  Google Scholar 

  22. Eyring, H.: The activated complex in chemical reactions. J. Chem. Phys. 3, 107–115 (1935)

    Article  CAS  Google Scholar 

  23. Henkelman, G., Uberuaga, B.P., Jonsson, H.: A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000)

    Article  CAS  Google Scholar 

  24. Henkelman, G., Jónsson, H.: Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000)

    Article  CAS  Google Scholar 

  25. Henkelman, G., Jóhannesson, G., Jónsson, H.: Methods for finding saddle points and minimum energy paths. In: Schwartz, S.D. (ed.) Theoretical Methods in Condensed Phase Chemistry, pp. 269–302. Springer, Dordrecht (2002)

    Chapter  Google Scholar 

  26. Evans, M.G., Polanyi, M.: Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans. Faraday Soc. 31, 875–894 (1935)

    Article  CAS  Google Scholar 

  27. Evans, M.G., Polanyi, M.: Further considerations on the thermodynamics of chemical equilibria and reaction rates. Trans. Faraday Soc. 32, 1333–1360 (1936)

    Article  CAS  Google Scholar 

  28. Logadottir, A., Rod, T.H., Nørskov, J.K., Hammer, B., Dahl, S., Jacobsen, C.J.H.: The Brønsted–Evans–Polanyi relation and the volcano plot for ammonia synthesis over transition metal catalysts. J. Catal. 197, 229–231 (2001)

    Article  CAS  Google Scholar 

  29. Cheng, J., Hu, P., Ellis, P., French, S., Kelly, G., Lok, C.M.: Brønsted−Evans−Polanyi relation of multistep reactions and volcano curve in heterogeneous catalysis. J. Phys. Chem. C 112, 1308–1311 (2008)

    Article  CAS  Google Scholar 

  30. van Santen, R.A., Neurock, M., Shetty, S.G.: Reactivity theory of transition-metal surfaces: a Brønsted−Evans−Polanyi linear activation energy−free-energy analysis. Chem. Rev. 110, 2005–2048 (2010)

    Article  Google Scholar 

  31. Asano, T., Le Noble, W.J.: Activation and reaction volumes in solution. Chem. Rev. 78, 407–489 (1978)

    Article  CAS  Google Scholar 

  32. Drljaca, A., Hubbard, C.D., van Eldik, R., Asano, T., Basilevsky, M.V., le Noble, W.J.: Activation and reaction volumes in solution. 3. Chem. Rev. 98, 2167–2290 (1998)

    Article  CAS  Google Scholar 

  33. Hill, T.L.: An Introduction to Statistical Thermodynamics. Dover Publications, Mineola (2012)

    Google Scholar 

  34. Bell, G.: Models for the specific adhesion of cells to cells. Science 200, 618–627 (1978)

    Article  CAS  Google Scholar 

  35. Makarov, D.E.: Perspective: mechanochemistry of biological and synthetic molecules. J. Chem. Phys. 144, 030901 (2016)

    Article  Google Scholar 

  36. Peters, B.: Chapter 8—saddles on the energy landscape. In: Peters, B. (ed.) Reaction Rate Theory and Rare Events Simulations, pp. 183–208. Elsevier, Amsterdam (2017)

    Chapter  Google Scholar 

  37. Hill, R.: On constitutive inequalities for simple materials—I. J. Mech. Phys. Solids 16, 229–242 (1968)

    Article  Google Scholar 

  38. Prandtl, L.: Ein Gedankenmodell zur kinetischen Theorie der festen Körper. J. Appl. Math. Mech. 8, 85–106 (1928)

    Google Scholar 

  39. Sheppard, D., Henkelman, G.: Paths to which the nudged elastic band converges. J. Comput. Chem. 32, 1769–1771 (2011)

    Article  CAS  Google Scholar 

  40. Wallace, D.C.: Thermoelasticity of stressed materials and comparison of various elastic constants. Phys. Rev. 162, 776–789 (1967)

    Article  CAS  Google Scholar 

  41. Crespo, A., Mazuyer, D., Morgado, N., Tonck, A., Georges, J.M., Cayer-Barrioz, J.: Methodology to characterize rheology, surface forces and friction of confined liquids at the molecular scale using the ATLAS apparatus. Tribol. Lett. 65, 138 (2017)

    Article  Google Scholar 

  42. Carpick, R.W., Salmeron, M.: Scratching the surface: fundamental investigations of tribology with atomic force microscopy. Chem. Rev. 97, 1163–1194 (1997)

    Article  CAS  Google Scholar 

  43. Piétrement, O., Troyon, M.: Study of the interfacial shear strength pressure dependence by modulated lateral force microscopy. Langmuir 17, 6540–6546 (2001)

    Article  Google Scholar 

  44. Abouhadid, F., Crespo, A., Morgado, N., Mazuyer, D., Cayer-Barrioz, J.: Friction laws for saturated/unsaturated fatty acid layers. Tribol. Lett. 69, 46 (2021)

    Article  CAS  Google Scholar 

  45. Georges, J.M., Mazuyer, D.: Pressure effects on the shearing of a colloidal thin film. J. Phys.: Condens. Matter 3, 9545 (1991)

    CAS  Google Scholar 

  46. Amontons, G.: De la résistance causée dans les machines. Mémoires de l’Académie Royale A 257−282 (1699)

  47. Barquins, M.: La tribologie—I. La science pour comprendre et maîtriser le frottement et l’usure. Bulletin de l’Union des Physiciens 88, 30 (1994)

    Google Scholar 

  48. Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. Lond. A 295, 300–319 (1966)

    Article  CAS  Google Scholar 

  49. Derjaguin, B.: Molekulartheorie der äußeren Reibung. Z. Phys. 88, 661–675 (1934)

    Article  Google Scholar 

  50. Gao, J., Luedtke, W.D., Gourdon, D., Ruths, M., Israelachvili, J.N., Landman, U.: Frictional forces and Amontons’ Law: from the molecular to the macroscopic scale. J. Phys. Chem. B 108, 3410–3425 (2004)

    Article  CAS  Google Scholar 

  51. Briscoe, B.J., Evans, D.C.B.: The shear properties of Langmuir-Blodgett layers. Proc. R. Soc. Lond. A Math. Phys. Sci. 380, 389–407 (1982)

    Article  CAS  Google Scholar 

  52. Hsu, C.-C., Peng, L., Hsia, F.-C., Weber, B., Bonn, D., Brouwer, A.M.: Molecular probing of the stress activation volume in vapor phase lubricated friction. ACS Appl. Mater. Interfaces (2023). https://doi.org/10.1021/acsami.3c00789

    Article  Google Scholar 

  53. Mazuyer, D., Cayer-Barrioz, J., Tonck, A., Jarnias, F.: Friction dynamics of confined weakly adhering boundary layers. Langmuir 24, 3857–3866 (2008)

    Article  CAS  Google Scholar 

  54. He, X., Liu, Z., Ripley, L.B., Swensen, V.L., Griffin-Wiesner, I.J., Gulner, B.R., et al.: Empirical relationship between interfacial shear stress and contact pressure in micro- and macro-scale friction. Tribol. Int. 155, 106780 (2021)

    Article  CAS  Google Scholar 

  55. Barel, I., Urbakh, M., Jansen, L., Schirmeisen, A.: Unexpected temperature and velocity dependencies of atomic-scale stick-slip friction. Phys. Rev. B (2011). https://doi.org/10.1103/PhysRevB.84.115417

    Article  Google Scholar 

  56. Greiner, C., Felts, J.R., Dai, Z., King, W.P., Carpick, R.W.: Controlling nanoscale friction through the competition between capillary adsorption and thermally activated sliding. ACS Nano 6, 4305–4313 (2012)

    Article  CAS  Google Scholar 

  57. Drummond, C., Israelachvili, J.: Dynamic behavior of confined branched hydrocarbon lubricant fluids under shear. Macromolecules 33, 4910–4920 (2000)

    Article  CAS  Google Scholar 

  58. Sills, S., Overney, R.M.: Creeping friction dynamics and molecular dissipation mechanisms in glassy polymers. Phys. Rev. Lett. 91, 095501 (2003)

    Article  Google Scholar 

  59. Bouhacina, T., Aimé, J., Gauthier, S., Michel, D., Heroguez, V.: Tribological behavior of a polymer grafted on silanized silica probed with a nanotip. Phys. Rev. B 56, 7694–7703 (1997)

    Article  CAS  Google Scholar 

  60. Cayer-Barrioz, J., Mazuyer, D., Tonck, A., Yamaguchi, E.: Frictional rheology of a confined adsorbed polymer layer. Langmuir 25, 10802–10810 (2009)

    Article  CAS  Google Scholar 

  61. Delamarre, S., Gmür, T., Spencer, N.D., Cayer-Barrioz, J.: Polymeric friction modifiers: influence of anchoring chemistry on their adsorption and effectiveness. Langmuir 38, 11451–11458 (2022)

    Article  CAS  Google Scholar 

  62. Gao, F., Furlong, O., Kotvis, P.V., Tysoe, W.T.: Pressure dependence of shear strengths of thin films on metal surfaces measured in ultrahigh vacuum. Tribol. Lett. 31, 99–106 (2008)

    Article  Google Scholar 

  63. Wu, G., Gao, F., Kaltchev, M., Gutow, J., Mowlem, J.K., Schramm, W.C., et al.: An investigation of the tribological properties of thin KCl films on iron in ultrahigh vacuum: modeling the extreme-pressure lubricating interface. Wear 252, 595–606 (2002)

    Article  CAS  Google Scholar 

  64. Garvey, M., Furlong, O.J., Weinert, M., Tysoe, W.T.: Shear properties of potassium chloride films on iron obtained using density functional theory. J. Phys.: Condens. Matter (2011). https://doi.org/10.1088/0953-8984/23/26/265003

    Article  Google Scholar 

  65. Garvey, M., Weinert, M., Tysoe, W.T.: On the pressure dependence of shear strengths in sliding, boundary-layer friction. Tribol. Lett. 44, 67–73 (2011)

    Article  CAS  Google Scholar 

  66. Gao, H., Tysoe, W.T., Martini, A.: Identification of the shear plane during sliding of solid boundary films: potassium chloride films on iron. Tribol. Lett. 62, 4 (2016)

    Article  Google Scholar 

  67. Osara, J.A., Lugt, P.M., Bryant, M.D., Khonsari, M.M.: Thermodynamic characterization of grease oxidation–thermal stability via pressure differential scanning calorimetry. Tribol. Trans. 65, 542–554 (2022)

    Article  CAS  Google Scholar 

  68. Bryant, M.D., Khonsari, M.M.: Application of degradation-entropy generation theorem to dry sliding friction and wear. Proceedings of the STLE/ASME 2008 International Joint Tribology Conference. Miami, Florida, USA. October 20–22, 2008. pp. 1–3 (2008)

  69. Prigogine, I.: Introduction to Thermodynamics of Irreversible Processes. Interscience Publishers, New York (1968)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Civil, Mechanical and Manufacturing Innovation (CMMI) Division of the National Science Foundation under Grant Number 2020525 for support of this work. This work was also supported by the French Agency for Ecological Transition (ADEME) through the IMOTEP project. WTT thanks Drs. J. P. Bonavia, B. P. Buggy and C. K. Rokkas without whom this work would not have been possible.

Funding

This study was supported by National Science Foundation (Grant No. CMMI2020525), French Agency for Ecological Transition (ADEME) (Grant No. IMOTEP).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Wilfred T. Tysoe.

Ethics declarations

Competing interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hopper, N., Sidoroff, F., Cayer-Barrioz, J. et al. A Molecular-Scale Analysis of Pressure-Dependent Sliding Shear Stresses. Tribol Lett 71, 121 (2023). https://doi.org/10.1007/s11249-023-01791-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-023-01791-8

Keywords

Navigation