Skip to main content
Log in

Optimum Wear Resistance Achieved by Balancing Bulk Hardness and Work-Hardening: A Case Study in Austenitic Stainless Steels

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Wear, which exists in all industries and walks of life, causes tremendous economic losses and even major disasters. To prevent damage caused by wear, Archard’s theory suggests the use of materials with higher hardness. However, such materials are minimally formable and difficult to manufacture. Recent studies have reported that strain hardening is another factor that significantly affects wear resistance. In this study, to investigate the relative potential of each of these factors and examine the balance between the hardness and work-hardening properties under various working conditions, we selected 321 austenitic stainless steel as a candidate material. Cold-rolling, which improves the base strength of the material, was used to develop strain-induced α′-martensite. Simultaneously, the strain-hardening capability of the material was decreased. The wear resistance and corresponding failure mechanisms were evaluated using the ball-on-disc test under various loading conditions. The results indicate that wear resistance depends on the bulk hardness and loading conditions used. A series of microstructural analyses revealed that the wear resistance is closely related to the base strength and hardening capability of the material. Therefore, this study establishes an optimum hardness–strain hardening balance and elucidates the design of low-hardness, high-wear-resistance materials for future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Trevisiol, C., Jourani, A., Bouvier, S.: Effect of hardness, microstructure, normal load and abrasive size on friction and on wear behaviour of 35NCD16 steel. Wear 388–389, 101–111 (2017). https://doi.org/10.1016/j.wear.2017.05.008

    Article  CAS  Google Scholar 

  2. Das Bakshi, S., Sinha, D., Ghosh Chowdhury, S., Mahashabde, V.V.: Surface and sub-surface damage of 0.20 wt% C-martensite during three-body abrasion. Wear 394–395, 217–227 (2018). https://doi.org/10.1016/j.wear.2017.07.004

    Article  CAS  Google Scholar 

  3. Das Bakshi, S., Shipway, P.H., Bhadeshia, H.K.D.H.: Three-body abrasive wear of fine pearlite, nanostructured bainite and martensite. Wear 308, 46–53 (2013). https://doi.org/10.1016/j.wear.2013.09.008

    Article  CAS  Google Scholar 

  4. Tyfour, W.R., Beynon, J.H., Kapoor, A.: The steady state wear behaviour of pearlitic rail steel under dry rolling-sliding contact conditions. Wear 180, 79–89 (1995). https://doi.org/10.1016/0043-1648(94)06533-0

    Article  CAS  Google Scholar 

  5. Moghaddam, P.V., Hardell, J., Vuorinen, E., Prakash, B.: The role of retained austenite in dry rolling/sliding wear of nanostructured carbide-free bainitic steels. Wear 428–429, 193–204 (2019). https://doi.org/10.1016/j.wear.2019.03.012

    Article  CAS  Google Scholar 

  6. Tressia, G., Pereira, J.I., Penagos, J.J., Bortoleto, E., Sinatora, A.: Effect of in-service work hardening on the sliding wear resistance of a heavy haul rail in the gauge corner. Wear 482–483, 203979 (2021). https://doi.org/10.1016/j.wear.2021.203979

    Article  CAS  Google Scholar 

  7. Téllez-Villaseñor, M.A., León-Patiño, C.A., Aguilar-Reyes, E.A., Bedolla-Jacuinde, A.: Effect of load and sliding velocity on the wear behaviour of infiltrated TiC/Cu–Ni composites. Wear 484–485, 203667 (2021). https://doi.org/10.1016/j.wear.2021.203667

    Article  CAS  Google Scholar 

  8. Lim, S.C.: Recent developments in wear-mechanism maps. Tribol Int 31, 87–97 (1998). https://doi.org/10.1016/s0301-679x(98)00011-5

    Article  Google Scholar 

  9. Liu, B., Li, W., Lu, X., Jia, X., Jin, X.: An integrated model of impact-abrasive wear in bainitic steels containing retained austenite. Wear 440–441, 203088 (2019). https://doi.org/10.1016/j.wear.2019.203088

    Article  CAS  Google Scholar 

  10. Liu, B., Li, W., Lu, X., Jia, X., Jin, X.: The effect of retained austenite stability on impact-abrasion wear resistance in carbide-free bainitic steels. Wear 428–429, 127–136 (2019). https://doi.org/10.1016/j.wear.2019.02.032

    Article  CAS  Google Scholar 

  11. Qin, W., Li, J., Liu, Y., Yue, W., Wang, C., Mao, Q., et al.: Effect of rolling strain on the mechanical and tribological properties of 316 L stainless steel. J. Tribol. (2019). https://doi.org/10.1115/1.4041214

    Article  Google Scholar 

  12. Fargas, G., Roa, J.J., Mateo, A.: Influence of pre-existing martensite on the wear resistance of metastable austenitic stainless steels. Wear 364–365, 40–47 (2016). https://doi.org/10.1016/j.wear.2016.06.018

    Article  CAS  Google Scholar 

  13. Ueda, M., Uchino, K., Kobayashi, A.: Effects of carbon content on wear property in pearlitic steels. Wear 253, 107–113 (2002). https://doi.org/10.1016/s0043-1648(02)00089-3

    Article  CAS  Google Scholar 

  14. Liu, R., Li, D.Y.: Modification of Archard’s equation by taking account of elastic/pseudoelastic properties of materials. Wear 251, 956–964 (2001). https://doi.org/10.1016/s0043-1648(01)00711-6

    Article  Google Scholar 

  15. Lindroos, M., Valtonen, K., Kemppainen, A., Laukkanen, A., Holmberg, K., Kuokkala, V.-T.: Wear behavior and work hardening of high strength steels in high stress abrasion. Wear 322–323, 32–40 (2015). https://doi.org/10.1016/j.wear.2014.10.018

    Article  CAS  Google Scholar 

  16. Viáfara, C.C., Castro, M.I., Vélez, J.M., Toro, A.: Unlubricated sliding wear of pearlitic and bainitic steels. Wear 259, 405–411 (2005). https://doi.org/10.1016/j.wear.2005.02.013

    Article  CAS  Google Scholar 

  17. Zhang, G.-S., Xing, J.-D., Gao, Y.-M.: Impact wear resistance of WC/Hadfield steel composite and its interfacial characteristics. Wear 260, 728–734 (2006). https://doi.org/10.1016/j.wear.2005.04.010

    Article  CAS  Google Scholar 

  18. Shukla, N., Roy, H., Show, B.K.: Tribological behavior of a 0.33% C dual-phase steel with Pre I/C hardening and tempering treatment under abrasive wear condition. Tribol T 59, 593–603 (2016). https://doi.org/10.1080/10402004.2015.1094841

    Article  CAS  Google Scholar 

  19. Xu, X., van der Zwaag, S., Xu, W.: The effect of martensite volume fraction on the scratch and abrasion resistance of a ferrite–martensite dual phase steel. Wear 348–349, 80–88 (2016). https://doi.org/10.1016/j.wear.2015.11.017

    Article  CAS  Google Scholar 

  20. Jha, A.K., Prasad, B.K., Modi, O.P., Das, S., Yegneswaran, A.H.: Correlating microstructural features and mechanical properties with abrasion resistance of a high strength low alloy steel. Wear 254, 120–128 (2003). https://doi.org/10.1016/s0043-1648(02)00309-5

    Article  CAS  Google Scholar 

  21. Pöhl, F., Hardes, C., Theisen, W.: Deformation behavior and dominant abrasion micro mechanisms of tempering steel with varying carbon content under controlled scratch testing. Wear 422–423, 212–222 (2019). https://doi.org/10.1016/j.wear.2019.01.073

    Article  CAS  Google Scholar 

  22. Souza Filho, I.R., Sandim, M.J.R., Ponge, D., Sandim, H.R.Z., Raabe, D.: Strain hardening mechanisms during cold rolling of a high-Mn steel: Interplay between submicron defects and microtexture. Mater Sci Eng A 754, 636–649 (2019). https://doi.org/10.1016/j.msea.2019.03.116

    Article  CAS  Google Scholar 

  23. Shi, Y., Yuan, M., Li, Z., La, P.: Two-step rolling and annealing makes nanoscale 316L austenite stainless steel with high ductility. Mater. Sci. Eng. A 759, 391–395 (2019). https://doi.org/10.1016/j.msea.2019.05.054

    Article  CAS  Google Scholar 

  24. Kim, M.T., Park, T.M., Baik, K.-H., Choi, W.S., Han, J.: Effects of cold rolling reduction ratio on microstructures and tensile properties of intercritically annealed medium-Mn steels. Mater. Sci. Eng. A 752, 43–54 (2019). https://doi.org/10.1016/j.msea.2019.02.091

    Article  CAS  Google Scholar 

  25. He, Y., Zhang, J., Wang, Y., Wang, Y., Wang, T.: The expansion behavior caused by deformation-induced martensite to austenite transformation in heavily cold-rolled metastable austenitic stainless steel. Mater. Sci. Eng. A 739, 343–347 (2019). https://doi.org/10.1016/j.msea.2018.10.075

    Article  CAS  Google Scholar 

  26. He, W., Li, F., Zhang, H., Chen, H., Guo, H.: The influence of cold rolling deformation on tensile properties and microstructures of Mn18Cr18 N austenitic stainless steel. Mater. Sci. Eng. A (2019). https://doi.org/10.1016/j.msea.2019.138245

    Article  Google Scholar 

  27. Benzing, J.T., da Silva, A.K., Morsdorf, L., Bentley, J., Ponge, D., Dutta, A., et al.: Multi-scale characterization of austenite reversion and martensite recovery in a cold-rolled medium-Mn steel. Acta Materialia 166, 512–530 (2019). https://doi.org/10.1016/j.actamat.2019.01.003

    Article  CAS  Google Scholar 

  28. Amininejad, A., Jamaati, R., Hosseinipour, S.J.: Achieving superior strength and high ductility in AISI 304 austenitic stainless steel via asymmetric cold rolling. Mater. Sci. Eng. A (2019). https://doi.org/10.1016/j.msea.2019.138433

    Article  Google Scholar 

  29. Aletdinov, A., Mironov, S., Korznikova, G., Konkova, T., Zaripova, R., Myshlyaev, M., et al.: EBSD investigation of microstructure evolution during cryogenic rolling of type 321 metastable austenitic steel. Mater. Sci. Eng A 745, 460–473 (2019). https://doi.org/10.1016/j.msea.2018.12.115

    Article  CAS  Google Scholar 

  30. Shintani, T., Murata, Y.: Evaluation of the dislocation density and dislocation character in cold rolled Type 304 steel determined by profile analysis of X-ray diffraction. Acta Materialia 59, 4314–4322 (2011). https://doi.org/10.1016/j.actamat.2011.03.055

    Article  CAS  Google Scholar 

  31. Hedayati, A., Najafizadeh, A., Kermanpur, A., Forouzan, F.: The effect of cold rolling regime on microstructure and mechanical properties of AISI 304L stainless steel. J. Mater. Process. Technol. 210, 1017–1022 (2010). https://doi.org/10.1016/j.jmatprotec.2010.02.010

    Article  CAS  Google Scholar 

  32. De, A.K., Murdock, D.C., Mataya, M.C., Speer, J.G., Matlock, D.K.: Quantitative measurement of deformation-induced martensite in 304 stainless steel by X-ray diffraction. Scripta Materialia 50, 1445–1449 (2004). https://doi.org/10.1016/j.scriptamat.2004.03.011

    Article  CAS  Google Scholar 

  33. Takaki, S., Tomimura, K., Ueda, S.: Effect of Pre-cold-working on diffusional reversion of deformation induced martensite in metastable austenitic stainless steel. ISIJ Int. 34, 522–527 (1994). https://doi.org/10.2355/isijinternational.34.522

    Article  CAS  Google Scholar 

  34. Efremenko, V.G., Hesse, O., Friedrich, T., Kunert, M., Brykov, M.N., Shimizu, K., et al.: Two-body abrasion resistance of high-carbon high-silicon steel: metastable austenite vs nanostructured bainite. Wear 418–419, 24–35 (2019). https://doi.org/10.1016/j.wear.2018.11.003

    Article  CAS  Google Scholar 

  35. Yan, X., Hu, J., Yu, H., Wang, C., Xu, W.: Unraveling the significant role of retained austenite on the dry sliding wear behavior of medium manganese steel. Wear (2021). https://doi.org/10.1016/j.wear.2021.203745

    Article  Google Scholar 

  36. Saada, F.B., Antar, Z., Elleuch, K., Ponthiaux, P., Gey, N.: The effect of nanocrystallized surface on the tribocorrosion behavior of 304L stainless steel. Wear 394–395, 71–79 (2018). https://doi.org/10.1016/j.wear.2017.10.007

    Article  CAS  Google Scholar 

  37. Li, G., Chen, J., Guan, D.: Friction and wear behaviors of nanocrystalline surface layer of medium carbon steel. Tribol. Int. 43, 2216–2221 (2010). https://doi.org/10.1016/j.triboint.2010.07.004

    Article  CAS  Google Scholar 

  38. Yan, W., Fang, L., Zheng, Z., Sun, K., Xu, Y.: Effect of surface nanocrystallization on abrasive wear properties in Hadfield steel. Tribol. Int. 42, 634–641 (2009). https://doi.org/10.1016/j.triboint.2008.08.012

    Article  CAS  Google Scholar 

  39. Zhang, F.C., Lei, T.Q.: A study of friction-induced martensitic transformation for austenitic manganese steel. Wear 212, 195–198 (1997)

    Article  CAS  Google Scholar 

  40. Li, C.X., Bell, T.: Sliding wear properties of active screen plasma nitrided 316 austenitic stainless steel. Wear 256, 1144–1152 (2004). https://doi.org/10.1016/j.wear.2003.07.006

    Article  CAS  Google Scholar 

  41. Zandrahimi, M., Bateni, M.R., Poladi, A., Szpunar, J.A.: The formation of martensite during wear of AISI 304 stainless steel. Wear 263, 674–678 (2007). https://doi.org/10.1016/j.wear.2007.01.107

    Article  CAS  Google Scholar 

  42. Williams, J.A.: Analytical models of scratch hardness. Tribol. Int. 29, 675–694 (1996). https://doi.org/10.1016/0301-679x(96)00014-x

    Article  CAS  Google Scholar 

  43. Talonen, J., Hänninen, H.: Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels. Acta Materialia 55, 6108–6118 (2007). https://doi.org/10.1016/j.actamat.2007.07.015

    Article  CAS  Google Scholar 

Download references

Funding

This project did not receive any specific public funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xu.

Ethics declarations

Conflict of interest

The authors state that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Wang, L., Hu, J. et al. Optimum Wear Resistance Achieved by Balancing Bulk Hardness and Work-Hardening: A Case Study in Austenitic Stainless Steels. Tribol Lett 71, 7 (2023). https://doi.org/10.1007/s11249-022-01681-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-022-01681-5

Keywords

Navigation