Skip to main content
Log in

Hydrothermal Synthesis of Monodisperse Hard Carbon Spheres and Their Water-Based Lubrication

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Monodisperse hard carbon spheres (HCSs) with different size from 300 nm to 1 μm were hydrothermally synthesized and characterized. The tribological performance of green water-based HCSs lubricant systems were studied between glass lens and silicon wafer at various normal loads and concentration on a universal micro-tribotester. The coefficient of friction (COF) increased with the particle size and an average COF of about 0.03 was measured when lubricated by 300 nm HCSs suspensions, whereas for 1-μm-sized carbon sphere, the average COF was 0.059 for the particle concentration of 1 mg/ml. For a given size of particles, the COF first decreases with increasing concentration, but the trend reverses after a critical concentration as adding more particles in the confined space block their movement causing higher COF. The wear life of the 1 μm HCSs lubricant was also evaluated at constant load of 2 N for the total shearing length of 8 m. A very low COF of 0.01 was stably achieved for the lubricant with 4 mg/ml HCSs suspension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jost, H.P.: Economic impact of tribology. ASME J. Mech. Eng. 97 (1974)

  2. Bhushan, B.: Nanotribology and Nanomechanics: An Introduction. Springer, New Yark (2008)

    Google Scholar 

  3. Jeng, Y.R., Huang, Y.H., Tsai, P.C., Hwang, G.L.: Tribological properties of carbon nanocapsule particles as lubricant additive. J. Tribol. 136, 0418011–0418019 (2014)

    Article  Google Scholar 

  4. Miura, K., Kamiya, S., Sasaki, N.: C60 molecular bearings. Phys. Rev. Lett. 90, 055509 (2003)

    Article  Google Scholar 

  5. Asaka, K., Miyazawa, K., Kizuk, T.: The toughness of multiwall carbon nanocapsules. Nanotechnology 20, 385705 (2009)

    Article  Google Scholar 

  6. Jaekeun, L., Sangwon, C., Yujin, H., Han-Jong, C., Changgun, L., Youngmin, C., et al.: Application of fullerene-added nano-oil for lubrication enhancement in friction surfaces. Tribol. Int. 42, 440–447 (2009)

    Article  Google Scholar 

  7. Feng, B.: Relation between the structure of C60 and its lubricity: a review. Lubr. Sci. 9, 181–183 (1997)

    Article  Google Scholar 

  8. Ohmae, N.: Humidity effects on tribology of advanced carbon materials. Tribol. Int. 39, 1497–1502 (2006)

    Article  Google Scholar 

  9. Berman, D., Erdemir, A., Sumant, A.V.: Reduced wear and friction enabled by graphene layers on sliding steel surfaces in dry nitrogen. Carbon 59, 167–175 (2013)

    Article  Google Scholar 

  10. Berman, D., Erdemir, A., Sumant, A.V.: Few layer graphene to reduce wear and friction on sliding steel surfaces. Carbon 54, 454–459 (2013)

    Article  Google Scholar 

  11. Lee, C.G., Hwang, Y.J., Choi, Y.M., Lee, J.K., Choi, C., Oh, J.M.: A study on the tribological characteristics of graphite nano-lubricants. Int. J. Precis. Eng. Manuf. 10, 85–90 (2009)

    Article  Google Scholar 

  12. Liu, D.E., Xie, G.X., Guo, D., Cui, Z.Y., Si, L.N., Wan, C.L., Zou, W., Luo, J.B.: Tunable lubricity of aliphatic ammonium graphite intercalation compounds at the micro/nanoscale. Carbon 115, 574–583 (2017)

    Article  Google Scholar 

  13. Xie, G.X., Forslund, M., Pan, J.S.: Direct electrochemical synthesis of reduced graphene oxide (rGO)/copper composite films and their electrical/electroactive properties. ACS Appl. Mater. Interfaces. 6, 7444–7455 (2014)

    Article  Google Scholar 

  14. Berman, D., Deshmukh, S.A., Sankaranarayanan, S.K., Erdemir, A., Sumant, A.V.: Extraordinary macroscale wear resistance of one atom thick graphene layer. Adv. Funct. Mater. 24, 6640–6646 (2014)

    Article  Google Scholar 

  15. Egberts, P., Han, G.H., Liu, X.Z., Johnson, A.C., Carpick, R.W.: Frictional behavior of atomically thin sheets: hexagonal-shaped graphene islands grown on copper by chemical vapor deposition. ACS Nano 8, 5010–5021 (2014)

    Article  Google Scholar 

  16. Liu, S.W., Wang, H.P., Xu, Q., Ma, T.B., Yu, G., Zhang, C.H., et al.: Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere. Nat. Commun. 8, 14029 (2017). doi:10.1038/ncomms14029

    Article  Google Scholar 

  17. Salomon, G., Gee, A.W.J.D., Zaat, J.H.: Methanol-chemical factors in Mos2-film lubrication. Wear 7, 87–101 (1964)

    Article  Google Scholar 

  18. Zhang, L., Chen, L., Wa, H., Chen, J., Zhou, H.: Synthesis and tribological properties of stearic acid-modified anatase (TiO2) nanoparticles. Tribol. Lett. 41, 409–416 (2011)

    Article  Google Scholar 

  19. Padgurskas, J., Rukuiza, R., Prosycevas, I.: Tribological properties of lubricant additives of Fe, Cu and co nanoparticles. Tribol. Int. 60, 224–232 (2013)

    Article  Google Scholar 

  20. Yu, H.L., Xu, Y., Shi, P.J., Xu, B.S., Wang, X.L., Liu, Q., et al.: Characterization and nano-mechanical properties of tribofilms using Cu nanoparticles as additives. Surf. Coat. Technol. 203, 28–34 (2008)

    Article  Google Scholar 

  21. Qui, S.Q., Dong, J.X., Cheng, G.X.: A review of ultrafine particles as antiwear additives and friction modifiers in lubricating oils. Lubr. Sci. 11–3, 217–226 (1999)

    Google Scholar 

  22. Vilt, S.G., Martin, N., McCabe, C., Jennings, G.K.: Frictional performance of silica microspheres. Tribol. Int. 44, 180–186 (2011)

    Article  Google Scholar 

  23. Rapoport, L., Leshchinsky, V., Lvovsky, M., Nepomnyashchy, O., Volovik, Y., Tenne, R.: Mechanism of friction of fullerenes. Ind. Lubr. Tribol. 54, 171–176 (2002)

    Article  Google Scholar 

  24. Beerschwinger, U., Reuben, R.L., Yang, S.J.: Frictional study of micromotor bearings. Sens. Actuators, A 63, 229–241 (1997)

    Article  Google Scholar 

  25. Waits, C.M., Geil, B., Ghodssi, R.: Encapsulated ball bearings for rotary micromachines. J. Micromech. Microeng. 17, 224–229 (2007)

    Article  Google Scholar 

  26. Sinha, S.K., Pang, R., Tang, X.S.: Application of micro-ball bearing on Si for high rolling life-cycle. Tribol. Int. 43, 178–187 (2010)

    Article  Google Scholar 

  27. Alazemi, A.A., Etacheri, V., Dysart, A.D., Stacke, L.E., Pol, V.G., Sadeghi, F.: Ultrasmooth submicrometer carbon spheres as lubricant additives for friction and wear reduction. ACS Appl. Mater. Interfaces. 7, 5514–5521 (2015)

    Article  Google Scholar 

  28. Sevilla, M., Fuertes, A.B.: Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem. Eur. J. 15, 4195–4203 (2009)

    Article  Google Scholar 

  29. Shin, Y., Wang, L.Q., Bae, I.T., Arey, B.W., Exarhos, G.J.: Hydrothermal syntheses of colloidal carbon spheres from cyclodextrins. J. Phys. Chem. C 12, 14236–14239 (2008)

    Article  Google Scholar 

  30. Cheng, G.G., Jiang, S.Y., Khosla, T., Pesika, N.S., Ding, J.N., Zhang, Y.H., et al.: Synthesis of hard carbon iron microspheres and their aqueous based tribological performance under magnetic field. Tribol. Lett. 64, 48 (2016)

    Article  Google Scholar 

  31. Mistry, K.K., Pol, V.G., Thackeray, M.M., Wen, J.G., Miller, D.J., Erdemir, A.: Synthesis and tribology of micro-carbon sphere additives for enhanced lubrication. Tribol. Trans. 58, 474–480 (2015)

    Article  Google Scholar 

  32. Baptista, Frederico R., Belhout, S.A., Giordani, S., Quinn, S.J.: Recent developments in carbon nanomaterial sensors. Chem. Soc. Rev. 44, 4433–4453 (2015)

    Article  Google Scholar 

  33. Sun, X., Li, Y.: Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew. Chem. Int. Ed. 43, 597–601 (2004)

    Article  Google Scholar 

  34. Banyay, M., Sarkar, M., Gräslund, A.: A library of IR bands of nucleic acids in solution. Biophys. Chem. 104, 477–488 (2003)

    Article  Google Scholar 

  35. Li, M., Li, W., Liu, S.: Hydrothermal synthesis, characterization, and KOH activation of carbon spheres from glucose. Carbohyd. Res. 346, 999–1004 (2011)

    Article  Google Scholar 

  36. Cai, S.B., Bhushan, B.: Meniscus and viscous forces during separation of hydrophilic and hydrophobic surfaces with liquid-mediated contacts. Mater. Sci. Eng. R 61, 78–106 (2008)

    Article  Google Scholar 

  37. Rymuza, Z., Pytko, S.: The effect of scale in tribological testing. J Mater. Res. Technol. 1, 13–20 (2012)

    Article  Google Scholar 

  38. Dennis, J.S., Jin, K., John, V.T., Pesika, N.S.: Carbon microspheres as ball bearings in aqueous-based lubrication. ACS Appl. Mater. Interfaces. 3, 2215–2218 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grand No. 51675236), Training Program of the Major Research Plan of the National Natural Science Foundation of China (Grand No. 91648109), the Tribology Science Fund of State Key Laboratory of Tribology (SKLTKF14A01) and the Postdoctoral Science Foundation of China (2016M600366).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guanggui Cheng, Noshir Pesika or Jianning Ding.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 301 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, G., Dong, L., Kamboj, L. et al. Hydrothermal Synthesis of Monodisperse Hard Carbon Spheres and Their Water-Based Lubrication. Tribol Lett 65, 141 (2017). https://doi.org/10.1007/s11249-017-0923-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-017-0923-8

Keywords

Navigation