Skip to main content
Log in

Highly Oriented MoS2 Coatings: Tribology and Environmental Stability

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Molybdenum disulfide (MoS2) coatings have been prepared via nitrogen (N2) spray deposition, a process which deliberately impinges particulates of MoS2 onto a substrate yielding a preferential basally oriented state. Adherent and highly oriented 100- to 300-nm-thick coatings were produced. These coatings exhibited lower initial friction coefficients than sputtered films in dry and humid environments. Such reductions likely stem from a higher degree of basal plane orientation throughout the film as confirmed by XRD. Initial friction in humid air for sprayed coatings (µ = 0.10) was half that of sputtered coatings (µ = 0.21), showing the ability of oriented surface films to produce a low shear strength interface. Aging of these coatings in a humid nitrogen environment also showed the propensity for the films to resist poisoning of their structure which could otherwise result in degraded tribological performance. These results also support the hypothesis that water vapor does not contribute to the oxidation of MoS2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fleischauer, P.D.: Effects of crystallite orientation on environmental stability and lubrication properties of sputtered MoS2 thin films. ASLE Trans. 27, 82–88 (1984)

    Article  Google Scholar 

  2. Lince, J.R., Fleischauer, P.D.: Crystallinity of rf-sputtered MoS2 films. J. Mater. Res. 2, 827–838 (1987)

    Article  Google Scholar 

  3. Holinski, R., Gänsheimer, J.: A study of the lubricating mechanism of molybdenum disulfide. Wear 19, 329–342 (1972)

    Article  Google Scholar 

  4. Singer, I.L., Washington, D.C.: Solid lubricating films for extreme environments. MRS Proc. 140, 215–226 (1988)

    Article  Google Scholar 

  5. Johnston, R.R.M., Moore, A.J.W.: The burnishing of molybdenum disulphide on to metal surfaces. Wear 7, 498–512 (1964)

    Article  Google Scholar 

  6. Salomon, G., De Gee, A.W.J., Zaat, J.H.: Mechano-chemical factors in MoS2-film lubrication. Wear 7, 87–101 (1964)

    Article  Google Scholar 

  7. Winer, W.O.: Molybdenum disulfide as a lubricant: a review of the fundamental knowledge. Wear 10, 422–452 (1967)

    Article  Google Scholar 

  8. Make, D.D., Gao, C., Bredell, L., Kuhhnann-wilsdorf, D.: Micromechanics of MoS2 lubrication. Wear 164, 480–491 (1993)

    Google Scholar 

  9. Rapoport, L., Moshkovich, A., Perfilyev, V., Lapsker, I., Halperin, G., Itovich, Y., Etsion, I.: Friction and wear of MoS2 films on laser textured steel surfaces. Surf. Coat. Technol. 202, 3332–3340 (2008)

    Article  Google Scholar 

  10. Hilton, M.R., Bauer, R., Fleischauer, P.D.: Tribological performance and deformation of sputter-deposited MoS2 solid lubricant films during sliding wear and indentation contact. Thin Solid Films 188, 219–236 (1990)

    Article  Google Scholar 

  11. Spalvins, T.: Structure of sputtered molybdenum disulfide films at various substrate temperatures. ASLE Trans. 17, 1–7 (1974)

    Article  Google Scholar 

  12. Panitz, J., Pope, L.E., Hills, C.R., Lyons, J.E., Staley, D.J.: A statistical study of the combined effects of substrate temperature, bias, annealing and a Cr3Si2 undercoating on the tribological properties of rf sputtered MoS2 coatings. Thin Solid Films 154, 323–332 (1987)

    Article  Google Scholar 

  13. Panitz, J.K.G., Pope, L.E., Lyons, J.E., Staley, D.J.: The tribological properties of MoS2 coatings in vacuum, low relative humidity, and high relative humidity environments. J. Vac. Sci. Technol., A 6, 1166–1170 (1988)

    Article  Google Scholar 

  14. Bertrand, P.A.: Orientation of rf-sputter-deposited MoS2 films. J. Mater. Res. 4, 180–184 (1989)

    Article  Google Scholar 

  15. Muratore, C., Voevodin, A.A.: Control of molybdenum disulfide basal plane orientation during coating growth in pulsed magnetron sputtering discharges. Thin Solid Films 517, 5605–5610 (2009)

    Article  Google Scholar 

  16. Vierneusel, B., Schneider, T., Tremmel, S., Wartzack, S., Gradt, T.: Humidity resistant MoS2 coatings deposited by unbalanced magnetron sputtering. Surf. Coat. Technol. 235, 97–107 (2013)

    Article  Google Scholar 

  17. Moser, J., Liao, H., Levy, F.: Texture characterisation of sputtered MoS2 thin films by cross-sectional TEM analysis. J. Phys. D Appl. Phys. 23, 624–626 (1990)

    Article  Google Scholar 

  18. Scharf, T.W., Kotula, P.G., Prasad, S.V.: Friction and wear mechanisms in MoS2/Sb2O3/Au nanocomposite coatings. Acta Mater. 58, 4100–4109 (2010)

    Article  Google Scholar 

  19. Hilton, M.R., Bauer, R., Didziulis, S.V., Dugger, M.T., Keem, J.M., Scholhamer, J.: Structural and tribological studies of MoS2 solid lubricant films having tailored metal-multilayer nanostructures. Surf. Coat. Technol. 53, 13–23 (1992)

    Article  Google Scholar 

  20. Niederhauser, P., Hintermann, H.E., Maillat, M.: Moisture-resistant MoS2-based composite lubricant films. Thin Solid Films 108, 209–218 (1983)

    Article  Google Scholar 

  21. Zabinski, J.S., Donley, M.S., Walck, S.D., Schneider, T.R., Mcdevitt, N.T.: The effects of dopants on the chemistry and tribology of sputter-deposited MoS2 films. Tribol. Trans. 38, 894–904 (1995)

    Article  Google Scholar 

  22. Martin, J.M., Donnet, C., Le Mogne, T., Epicier, T.: Superlubricity of molybdenum disulphide. Phys. Rev. B: Condens. Matter 48, 10583–10586 (1993)

    Article  Google Scholar 

  23. Fleischauer, P.D., Hilton, M.R.: Applications of space tribology in the USA. Tribol. Int. 23, 135–139 (1990)

    Article  Google Scholar 

  24. Khare, H.S., Burris, D.L.: The effects of environmental water and oxygen on the temperature-dependent friction of sputtered molybdenum disulfide. Tribol. Lett. 52, 485–493 (2013)

    Article  Google Scholar 

  25. Khare, H.S., Burris, D.L.: Surface and subsurface contributions of oxidation and moisture to room temperature friction of molybdenum disulfide. Tribol. Lett. 53, 329–336 (2014)

    Article  Google Scholar 

  26. Dudder, G.J., Zhao, X., Krick, B., Sawyer, W.G., Perry, S.S.: Environmental effects on the tribology and microstructure of MoS2–Sb2O3–C films. Tribol. Lett. 42, 203–213 (2011)

    Article  Google Scholar 

  27. Ross, S., Sussman, A.: Surface oxidation of molybdenum disulfide. J. Phys. Chem. 59, 889–892 (1955)

    Article  Google Scholar 

  28. Johnston, R.M., Moore, A.J.W.: Water adsorption on molybdenum disulfide containing surface contaminants. J. Phys. Chem. 68, 3399–3406 (1964)

    Article  Google Scholar 

  29. Haltner, A.J., Oliver, C.S.: Effect of water vapor on friction of molybdenum disulfide. Ind. Eng. Chem. Fundam. 5, 348–355 (1966)

    Article  Google Scholar 

  30. Pritchard, C., Midgley, J.W.: The effect of humidity on the friction and life of unbonded molybdenum disulphide films. Wear 13, 39–50 (1969)

    Article  Google Scholar 

  31. Zhao, X., Perry, S.S.: The role of water in modifying friction within MoS2 sliding interfaces. ACS Appl. Mater. Interfaces 2, 1444–1448 (2010)

    Article  Google Scholar 

  32. Uemura, M., Saito, K., Nakao, K.: A mechanism of vapor effect on friction coefficient of molybdenum disulfide. Tribol. Trans. 33, 551–556 (1990)

    Article  Google Scholar 

  33. Hilton, M.R., Fleischauer, P.D.: Structural studies of sputter-deposited MoS2 solid lubricant films. MRS Proc. 140, 227–238 (1988)

    Article  Google Scholar 

  34. Fleischauer, P.D., Bauer, R.: The influence of surface chemistry on MoS2 transfer film formation. ASLE Trans. 30, 160–166 (1987)

    Article  Google Scholar 

  35. Aouadi, S.M., Paudel, Y., Luster, B., Stadler, S., Kohli, P., Muratore, C., Hager, C., Voevodin, A.A.: Adaptive Mo2N/MoS2/Ag tribological nanocomposite coatings for aerospace applications. Tribol. Lett. 29, 95–103 (2007)

    Article  Google Scholar 

  36. Baker, C.C., Chromik, R.R., Wahl, K.J., Hu, J.J., Voevodin, A.A.: Preparation of chameleon coatings for space and ambient environments. Thin Solid Films 515, 6737–6743 (2007)

    Article  Google Scholar 

  37. Voevodin, A.A., Zabinski, J.S.: Nanocomposite and nanostructured tribological materials for space applications. Compos. Sci. Technol. 65, 741–748 (2005)

    Google Scholar 

  38. Zabinski, J.S., Bultman, J.E., Sanders, J.H., Hu, J.J.: Multi-environmental lubrication performance and lubrication mechanism of MoS2/Sb2O3/C composite films. Tribol. Lett. 23, 155–163 (2006)

    Article  Google Scholar 

  39. Prasad, S.V., McDevitt, N.T., Zabinski, J.S.: Tribology of tungsten disulfide–nanocrystalline zinc oxide adaptive lubricant films from ambient to 500 °C. Wear 237, 186–196 (2000)

    Article  Google Scholar 

  40. Hu, J.J., Bultman, J.E., Zabinski, J.S.: Microstructure and lubrication mechanism of multilayered MoS2/Sb2O3 thin films. Tribol. Lett. 21, 169–174 (2006)

    Article  Google Scholar 

  41. Seitzman, L.E., Singer, I.L., Bolster, R.N., Gossett, C.R.: Effect of a titanium nitride interlayer on the endurance and composition of a molybdenum disulfide coating prepared by ion-beam-assisted deposition. Surf. Coat. Technol. 51, 232–236 (1992)

    Article  Google Scholar 

  42. Seitzman, L.E., Bolster, R.N., Singer, I.L., Wegand, J.C.: Relationship of endurance to microstructure of IBAD MoS2 coatings. Tribol. Trans. 38, 445–451 (1995)

    Article  Google Scholar 

  43. Stewart, T.B., Fleischauer, P.D.: Chemistry of sputtered molybdenum disulfide films. Inorg. Chem. 21, 2426–2431 (1982)

    Article  Google Scholar 

  44. Fleischauer, P.D.: Fundamental aspects of the electronic structure, materials properties and lubrication performance of sputtered MoS2 films. Thin Solid Films 154, 309–322 (1987)

    Article  Google Scholar 

  45. Krick, B.A., Vail, J.R., Persson, B.N.J., Sawyer, W.G.: Optical in situ micro tribometer for analysis of real contact area for contact mechanics, adhesion, and sliding experiments. Tribol. Lett. 45, 185–194 (2011)

    Article  Google Scholar 

  46. Colbert, R.S., Krick, B.A., Dunn, A.C., Vail, J.R., Argibay, N., Sawyer, W.G.: Uncertainty in pin-on-disk wear volume measurements using surface scanning techniques. Tribol. Lett. 42, 129–131 (2011)

    Article  Google Scholar 

  47. Schmitz, T.L., Action, J.E., Burris, D.L., Ziegert, J.C., Sawyer, W.G.: Wear-rate uncertainty analysis. J. Tribol. 126, 802 (2004)

    Article  Google Scholar 

  48. Burris, D.L., Sawyer, W.G.: Addressing practical challenges of low friction coefficient measurements. Tribol. Lett. 35, 17–23 (2009)

    Article  Google Scholar 

  49. Stoyanov, P., Chromik, R.R., Goldbaum, D., Lince, J.R., Zhang, X.: Microtribological performance of Au–MoS2 and Ti–MoS2 coatings with varying contact pressure. Tribol. Lett. 40, 199–211 (2010)

    Article  Google Scholar 

  50. Singer, I.L., Bolster, R.N., Wegand, J., Fayeulle, S., Stupp, B.C.: Hertzian stress contribution to low friction behavior of thin MoS2 coatings. Appl. Phys. Lett. 57, 995–997 (1990)

    Article  Google Scholar 

  51. Scharf, T.W., Prasad, S.V.: Solid lubricants: a review. J. Mater. Sci. 48, 511–531 (2013)

    Article  Google Scholar 

  52. Archard, J.F., Hirst, W.: The wear of metals under unlubricated conditions. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 236, 397–410 (1956)

    Article  Google Scholar 

  53. De Gee, A.W.J., Salomon, G., Zaat, J.H., Gee, D.A.W.J., Salomon, G., Zaat, J.H.: On the Mechanisms of MoS2-film failure in sliding friction. ASLE Trans. 8, 156–163 (1965)

    Article  Google Scholar 

  54. Ripoll, M.R., Simič, R., Brenner, J., Podgornik, B.: Friction and lifetime of laser surface-textured and MoS2-coated Ti6Al4V under dry reciprocating sliding. Tribol. Lett. 51, 261–271 (2013)

    Article  Google Scholar 

  55. Gardos, M.N.: The synergistic effects of graphite on the friction and wear of MoS2 films in air. Tribol. Trans. 31, 214–227 (1988)

    Article  Google Scholar 

  56. Spalvins, T.: Morphological and frictional behavior of sputtered MoS2 films. Thin Solid Films 96, 17–24 (1982)

    Article  Google Scholar 

  57. Spalvins, T.: Lubrication with sputtered MoS2 films: principles, operation, and limitations. JMEP 1, 347–351 (1991)

    Article  Google Scholar 

  58. Fleischauer, P.D., Bauer, R.: Chemical and structural effects on the lubrication properties of sputtered MoS2 films. Tribol. Trans. 31, 239–250 (1988)

    Article  Google Scholar 

  59. Cizaire, L., Vacher, B., Le Mogne, T., Martin, J.M., Rapoport, L., Margolin, A., Tenne, R.: Mechanisms of ultra-low friction by hollow inorganic fullerene-like MoS2 nanoparticles. Surf. Coat. Technol. 160, 282–287 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Sandia National Laboratories staff members Paul Kotula for acquisition of TEM images, Michael Rye for FIB sample preparation, and Bonnie McKenzie for SEM and EDS microscopy. We thank Lehigh University Tribology Lab members Mark Sidebottom and Guosong Zeng for discussions and help in setting up instrumentation. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brandon A. Krick.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Curry, J.F., Argibay, N., Babuska, T. et al. Highly Oriented MoS2 Coatings: Tribology and Environmental Stability. Tribol Lett 64, 11 (2016). https://doi.org/10.1007/s11249-016-0745-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-016-0745-0

Keywords

Navigation