Skip to main content
Log in

Relationship Between the Nanoscale Topographical and Mechanical Properties of Tribochemical Films on DLC Coatings and Their Macroscopic Friction Behavior

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The properties of tribochemical films play an important, or even the key, role with respect to friction in boundary lubrication. While their chemical behavior has already been widely studied, their mechanical properties are much less well understood. However, their nanoscale mechanical properties and behavior may reveal important information about a correlation with the macroscopic friction behavior. In this investigation, we looked at steel, a-C:H and Si-DLC in contact with steel lubricated using two commercial oils containing different amount of SAPS additives (E6 and E7 grade) and a mineral base oil containing the ZDDP additive. The tribofilms were characterized using an atomic force microscope with seven different parameters, i.e., the topography (features morphology), tribofilm surface coverage, nano-roughness, adhesion, film thickness, lateral force, i.e., nanoscale friction, and the film stiffness through force modulation. The results confirmed the formation of tribofilms on all the selected coatings and showed that the film formation and its nanoscale properties are dependent on the coating and the additive. Two distinctive groups of parameters were identified: one closely related to the surface energy of the materials and the other clearly distinguishing the DLC coatings from the steel. The adhesion and tribofilm thickness were found to correlate directly with the macroscopic friction, while the other parameters have higher-order dependences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Kalin, M., Velkavrh, I., Vižintin, J., Ožbolt, L.: Review of boundary lubrication mechanisms of DLC coatings used in mechanical applications. Meccanica 43(6), 623–637 (2008). doi:10.1007/s11012-008-9149-z

    Article  Google Scholar 

  2. Kalin, M., Roman, E., Ožbolt, L., Vižintin, J.: Metal-doped (Ti, WC) diamond-like-carbon coatings: reactions with extreme-pressure oil additives under tribological and static conditions. Thin Solid Films 518(15), 4336–4344 (2010). doi:10.1016/j.tsf.2010.02.066

    Article  Google Scholar 

  3. Vengudusamy, B., Mufti, R.A., Lamb, G.D., Green, J.H., Spikes, H.A.: Friction properties of DLC/DLC contacts in base oil. Tribol. Int. 44(7–8), 922–932 (2011). doi:10.1016/j.triboint.2011.03.006

    Article  Google Scholar 

  4. Mabuchi, Y., Higuchi, T., Inagaki, Y., Kousaka, H., Umehara, N.: Wear analysis of hydrogen-free diamond-like carbon coatings under a lubricated condition. Wear 298–299, 48–56 (2013). doi:10.1016/j.wear.2012.11.046

    Article  Google Scholar 

  5. Yang, L., Neville, A., Brown, A., Ransom, P., Morina, A.: Friction reduction mechanisms in boundary lubricated W-doped DLC coatings. Tribol. Int. 70, 26–33 (2014). doi:10.1016/j.triboint.2013.09.020

    Article  Google Scholar 

  6. Shum, P.W., Zhou, Z.F., Li, K.Y.: Investigation of the tribological properties of the different textured DLC coatings under reciprocating lubricated conditions. Tribol. Int. 65, 259–264 (2013). doi:10.1016/j.triboint.2013.01.012

    Article  Google Scholar 

  7. Topolovec-Miklozic, K., Lockwood, F., Spikes, H.: Behaviour of boundary lubricating additives on DLC coatings. Wear 265(11–12), 1893–1901 (2008). doi:10.1016/j.wear.2008.04.051

    Article  Google Scholar 

  8. Kalin, M., Vižintin, J., Barriga, J., Vercammen, K., Acker, K., Arnšek, A.: The effect of doping elements and oil additives on the tribological performance of boundary-lubricated DLC/DLC contacts. Tribol. Lett. 17(4), 679–688 (2004)

    Article  Google Scholar 

  9. Abdullah Tasdemir, H., Tokoroyama, T., Kousaka, H., Umehara, N., Mabuchi, Y.: Influence of zinc dialkyldithiophosphate tribofilm formation on the tribological performance of self-mated diamond-like carbon contacts under boundary lubrication. Thin Solid Films 562, 389–397 (2014). doi:10.1016/j.tsf.2014.05.004

    Article  Google Scholar 

  10. De Barros Bouchet, M.I., Martin, J.M.: New trends in boundary lubrication of DLC coatings. In: Donnet, C., Erdemir, A. (eds.) Tribology of Diamond-Like Carbon Films, pp. 591–619. Springer, US (2008)

    Chapter  Google Scholar 

  11. Forsberg, P., Gustavsson, F., Renman, V., Hieke, A., Jacobson, S.: Performance of DLC coatings in heated commercial engine oils. Wear 304(1), 211–222 (2013)

    Article  Google Scholar 

  12. Biswas, S.K.: Some mechanisms of tribofilm formation in metal/metal and ceramic/metal sliding interactions. Wear 245(1–2), 178–189 (2000). doi:10.1016/S0043-1648(00)00477-4

    Article  Google Scholar 

  13. Kosarieh, S., Morina, A., Lainé, E., Flemming, J., Neville, A.: Tribological performance and tribochemical processes in a DLC/steel system when lubricated in a fully formulated oil and base oil. Surf. Coat. Technol. 217, 1–12 (2013). doi:10.1016/j.surfcoat.2012.11.065

    Article  Google Scholar 

  14. Vengudusamy, B., Green, J.H., Lamb, G.D., Spikes, H.A.: Behaviour of MoDTC in DLC/DLC and DLC/steel contacts. Tribol. Int. 54, 68–76 (2012). doi:10.1016/j.triboint.2012.04.028

    Article  Google Scholar 

  15. Vengudusamy, B., Green, J.H., Lamb, G.D., Spikes, H.A.: Tribological properties of tribofilms formed from ZDDP in DLC/DLC and DLC/steel contacts. Tribol. Int. 44(2), 165–174 (2011). doi:10.1016/j.triboint.2010.10.023

    Article  Google Scholar 

  16. Kalin, M., Vizintin, J.: A comparison of the tribological behaviour of steel/steel, steel/DLC and DLC/DLC contacts when lubricated with mineral and biodegradable oils. Wear 261(1), 22–31 (2006)

    Article  Google Scholar 

  17. de Barros’Bouchet, M.I., Martin, J.M., Le-Mogne, T., Vacher, B.: Boundary lubrication mechanisms of carbon coatings by MoDTC and ZDDP additives. Tribol. Int. 38(3), 257–264 (2005). doi:10.1016/j.triboint.2004.08.009

    Article  Google Scholar 

  18. Equey, S., Roos, S., Mueller, U., Hauert, R., Spencer, N.D., Crockett, R.: Tribofilm formation from ZnDTP on diamond-like carbon. Wear 264(3–4), 316–321 (2008). doi:10.1016/j.wear.2007.03.012

    Article  Google Scholar 

  19. Vengudusamy, B., Grafl, A., Preinfalk, K.: Tribological properties of hydrogenated amorphous carbon under dry and lubricated conditions. Diam. Relat. Mater. 41, 53–64 (2014). doi:10.1016/j.diamond.2013.11.009

    Article  Google Scholar 

  20. Haque, T., Morina, A., Neville, A., Kapadia, R., Arrowsmith, S.: Study of the ZDDP Antiwear Tribofilm Formed on the DLC Coating Using AFM and XPS Techniques. Journal of ASTM International (JAI) 4(7), 11 (2007)

    Google Scholar 

  21. Topolovec-Miklozic, K., Forbus, T.R., Spikes, H.A.: Film thickness and roughness of ZDDP antiwear films. Tribol. Lett. 26(2), 161–171 (2007)

    Article  Google Scholar 

  22. Equey, S., Roos, S., Mueller, U., Hauert, R., Spencer, N.D., Crockett, R.: Reactions of zinc-free anti-wear additives in DLC/DLC and steel/steel contacts. Tribol. Int. 41(11), 1090–1096 (2008)

    Article  Google Scholar 

  23. Ahn, H.S., Chizhik, S.A., Dubravin, A.M., Kazachenko, V.P., Popov, V.V.: Application of phase contrast imaging atomic force microscopy to tribofilms on DLC coatings. Wear 249(7), 617–625 (2001). doi:10.1016/s0043-1648(01)00694-9

    Article  Google Scholar 

  24. Xu, J., Kawaguchi, M., Kato, T.: Evolution of transfer layers on steel balls sliding against hydrogenated amorphous carbon coatings in ambient air. Tribol. Int. 70, 42–51 (2014)

    Article  Google Scholar 

  25. Kubo, T., Fujiwara, S., Nanao, H., Minami, I., Mori, S.: Boundary film formation from overbased calcium sulfonate additives during running-in process of steel–DLC contact. Wear 265(3), 461–467 (2008)

    Article  Google Scholar 

  26. Haque, T., Morina, A., Neville, A., Kapadia, R., Arrowsmith, S.: Non-ferrous coating/lubricant interactions in tribological contacts: assessment of tribofilms. Tribol. Int. 40(10–12), 1603–1612 (2007). doi:10.1016/j.triboint.2007.01.023

    Article  Google Scholar 

  27. Morina, A., Neville, A.: Understanding the composition and low friction tribofilm formation/removal in boundary lubrication. Tribol. Int. 40(10), 1696–1704 (2007)

    Article  Google Scholar 

  28. Gangopadhyay, A., Sinha, K., Uy, D., McWatt, D.G., Zdrodowski, R.J., Simko, S.J.: Friction, wear, and surface film formation characteristics of diamond-like carbon thin coating in valvetrain application. Tribol. Trans. 54(1), 104–114 (2010)

    Article  Google Scholar 

  29. Lamberton, R.W., Zhao, J.F., Magill, D., McLaughlin, J.A., Maguire, P.D.: A study of ultra-thin film ion beam deposited (IBD) hydrogenated amorphous carbon (a-C:H) using atomic force microscopy (AFM) and transmission electron microscopy (TEM). Diam. Relat. Mater. 7(7), 1054–1058 (1998). doi:10.1016/S0925-9635(98)00153-8

    Article  Google Scholar 

  30. Kalin, M., Vizintin, J.: Differences in the tribological mechanisms when using non-doped, metal-doped (Ti, WC), and non-metal-doped (Si) diamond-like carbon against steel under boundary lubrication, with and without oil additives. Thin Solid Films 515(4), 2734–2747 (2006)

    Article  Google Scholar 

  31. Kalin, M., Polajnar, M.: The correlation between the surface energy, the contact angle and the spreading parameter, and their relevance for the wetting behaviour of DLC with lubricating oils. Tribol. Int. 66, 225–233 (2013). doi:10.1016/j.triboint.2013.05.007

    Article  Google Scholar 

  32. Rudnick, L.R.: Synthetics, Mineral Oils, and Bio-based Lubricants: Chemistry and Technology. CRC Press, Boca Raton (2013)

    Book  Google Scholar 

  33. Fuller, M.L.S., Kasrai, M., Bancroft, G.M., Fyfe, K., Tan, K.H.: Solution decomposition of zinc dialkyl dithiophosphate and its effect on antiwear and thermal film formation studied by X-ray absorption spectroscopy. Tribol. Int. 31(10), 627–644 (1998). doi:10.1016/S0301-679X(98)00084-X

    Article  Google Scholar 

  34. Martin, J.M., Onodera, T., Minfray, C., Dassenoy, F., Miyamoto, A.: The origin of anti-wear chemistry of ZDDP. Faraday Discuss. 156, 311–323 (2012)

    Article  Google Scholar 

  35. Spikes, H.: The history and mechanisms of ZDDP. Tribol. Lett. 17(3), 469–489 (2004). doi:10.1023/B:TRIL.0000044495.26882.b5

    Article  Google Scholar 

  36. Zhang, Z., Yamaguchi, E.S., Kasrai, M., Bancroft, G.M.: Tribofilms generated from ZDDP and DDP on steel surfaces: part 1, growth, wear and morphology. Tribol. Lett. 19(3), 211–220 (2005). doi:10.1007/s11249-005-6148-2

    Article  Google Scholar 

  37. Horcas, I., Fernández, R., Gómez-Rodríguez, J.M., Colchero, J., Gómez-Herrero, J., Baro, A.M.: WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78(1), 013705 (2007). doi:10.1063/1.2432410

    Article  Google Scholar 

  38. Maivald, P., Butt, H.J., Gould, S.A.C., Prater, C.B., Drake, B., Gurley, J.A., Elings, V.B., Hansma, P.K.: Using force modulation to image surface elasticities with the atomic force microscope. Nanotechnology 2(2), 103 (1991)

    Article  Google Scholar 

  39. Li, F.-B., Thompson, G.E., Newman, R.C.: Force modulation atomic force microscopy: background, development and application to electrodeposited cerium oxide films. Appl. Surf. Sci. 126(1–2), 21–33 (1998). doi:10.1016/S0169-4332(97)00590-4

    Article  Google Scholar 

  40. Martin, P.M.: Handbook of deposition technologies for films and coatings: science, applications and technology. William Andrew, Norwich (2009)

    Google Scholar 

  41. 4287:1997, I.: ISO 4287:1997. In: Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Terms, Definitions and Surface Texture Parameters, p. 25 (1997)

  42. Aktary, M., McDermott, M.T., McAlpine, G.A.: Morphology and nanomechanical properties of ZDDP antiwear films as a function of tribological contact time. Tribol. Lett. 12(3), 155–162 (2002)

    Article  Google Scholar 

  43. Mourhatch, R., Aswath, P.B.: Tribological behavior and nature of tribofilms generated from fluorinated ZDDP in comparison to ZDDP under extreme pressure conditions—part II: morphology and nanoscale properties of tribofilms. Tribol. Int. 44(3), 201–210 (2011). doi:10.1016/j.triboint.2010.10.035

    Article  Google Scholar 

  44. Boyde, S.: Green lubricants. Environmental benefits and impacts of lubrication. Green Chem. 4(4), 293–307 (2002)

    Article  Google Scholar 

  45. Bec, S., Tonck, A., Georges, J.-M., Coy, R.C., Bell, J.C., Roper, G.W.: Relationship between mechanical properties and structures of zinc dithiophosphate anti-wear films. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 455(1992), 4181–4203 (1999)

  46. Kalin, M., Velkavrh, I.: Non-conventional inverse-Stribeck-curve behaviour and other characteristics of DLC coatings in all lubrication regimes. Wear 297(1–2), 911–918 (2013). doi:10.1016/j.wear.2012.11.010

    Article  Google Scholar 

  47. Qu, J., Meyer Iii, H.M., Cai, Z.-B., Ma, C., Luo, H.: Characterization of ZDDP and ionic liquid tribofilms on non-metallic coatings providing insights of tribofilm formation mechanisms. Wear 332–333, 1273–1285 (2015). doi:10.1016/j.wear.2015.01.076

    Article  Google Scholar 

  48. Miyake, S., Saito, T., Yasuda, Y., Okamoto, Y., Kano, M.: Improvement of boundary lubrication properties of diamond-like carbon (DLC) films due to metal addition. Tribol. Int. 37(9), 751–761 (2004). doi:10.1016/j.triboint.2004.01.014

    Article  Google Scholar 

  49. Ban, M., Ryoji, M., Fujii, S., Fujioka, J.: Tribological characteristics of Si-containing diamond-like carbon films under oil-lubrication. Wear 253(3–4), 331–338 (2002). doi:10.1016/s0043-1648(02)00156-4

    Article  Google Scholar 

  50. Kalin, M., Vižintin, J., Vercammen, K., Barriga, J., Arnšek, A.: The lubrication of DLC coatings with mineral and biodegradable oils having different polar and saturation characteristics. Surf. Coat. Technol. 200(14–15), 4515–4522 (2006). doi:10.1016/j.surfcoat.2005.03.016

    Article  Google Scholar 

  51. Ouyang, J.H., Sasaki, S.: Friction and wear characteristics of a Ti-containing diamond-like carbon coating with an SRV tester at high contact load and elevated temperature. Surf. Coat. Technol. 195(2–3), 234–244 (2005). doi:10.1016/j.surfcoat.2004.06.041

    Article  Google Scholar 

  52. Velkavrh, I., Kalin, M., Vizintin, J.: The performance and mechanisms of DLC-coated surfaces in contact with steel in boundary-lubrication conditions: a review. Strojniški vestn. 54(3), 189–206 (2008)

    Google Scholar 

  53. Ye, J., Kano, M., Yasuda, Y.: Evaluation of local mechanical properties in depth in MoDTC/ZDDP and ZDDP tribochemical reacted films using nanoindentation. Tribol. Lett. 13(1), 41–47 (2002). doi:10.1023/a:1016559807453

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Slovenian Research Agency of the Republic of Slovenia for financial support, Contracts No. 1000-11-310114.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitjan Kalin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oblak, E., Kalin, M. Relationship Between the Nanoscale Topographical and Mechanical Properties of Tribochemical Films on DLC Coatings and Their Macroscopic Friction Behavior. Tribol Lett 59, 49 (2015). https://doi.org/10.1007/s11249-015-0575-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-015-0575-5

Keywords

Navigation