Skip to main content
Log in

High-Temperature Tribological Performance of TiAl Matrix Composites Reinforced by Multilayer Graphene

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

In order to acquire deep insights into understanding the lubricative properties of multilayer graphene (MLG) for MLG-reinforced TiAl matrix composites (GTMC), the high-temperature tribological performance of GTMC is investigated for the first time from 100 to 700 °C using a rotating ball-on-disk configuration. Tribological results indicate the evolution of lubricative properties of MLG with testing temperature. In the testing temperature range from 100 to 550 °C, MLG presents the excellent lubricative properties due to its low shear and highly protective nature. Between 550 and 600 °C, the transition of lubricative properties of MLG occurs. Above 600 °C, MLG loses the lubricative properties due to its oxidation but improves the oxidation resistance of GTMC by sealing the grain boundaries and inhibiting the influx of oxygen through grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ludema, K.C.: Friction, wear, lubrication: a textbook in tribology, pp. 69–155. CRC Press, Inc., Florida (1993)

    Google Scholar 

  2. Khorramian, B.A., Iyer, G.R., Kodali, S., Natarajan, P., Tupil, R.: Review of antiwear additives for crankcase oils. Wear 169, 87–95 (1993)

    Article  Google Scholar 

  3. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)

    Article  Google Scholar 

  4. Zhang, Y., Small, J.P., Pontius, W.V., Kim, P.: Fabrication and electric-fielddependent transport measurements of mesoscopic graphite devices. Appl. Phys. Lett. 86, 073104–073106 (2005)

    Article  Google Scholar 

  5. Zhang, Y.Y., Wang, C.M., Cheng, Y., Xiang, Y.: Mechanical properties of bilayer graphene sheets coupled by sp3 bonding. Carbon 49, 4511–4517 (2011)

    Article  Google Scholar 

  6. Suk, J.W., Piner, R.D., An, J., Ruoff, R.S.: Mechanical properties of monolayer graphene oxide. ACS Nano 4, 6557–6564 (2010)

    Article  Google Scholar 

  7. Ghosh, S., Calizo, I., Teweldebrhan, D., Pokatilov, E.P., Nika, L.: Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92, 151911–151913 (2008)

    Article  Google Scholar 

  8. Prasher, R.: Graphene spreads the heat. Science 328, 185–186 (2010)

    Article  Google Scholar 

  9. Kandanur, S.S., Rafiee, M.A., Yavari, F., Schrameyer, M., Yu, Z.Z.: Suppression of wear in graphene polymer composites. Carbon 50, 3178–3183 (2012)

    Article  Google Scholar 

  10. Lin, J., Wang, L., Chen, G.: Modification of graphene platelets and their tribological properties as a lubricant additive. Tribol. Lett. 41, 209–215 (2011)

    Article  Google Scholar 

  11. Belmontea, M., Schneider, J., Miranzo, P.: The beneficial effect of graphene nanofillers on the tribological performance of ceramics. Carbon 61, 431–435 (2013)

    Article  Google Scholar 

  12. Nieto, A., Lahiri, A., Agarwal, A.: Synthesis and properties of bulk graphene nanoplatelets consolidated by spark plasma sintering. Carbon 50, 4068–4077 (2012)

    Article  Google Scholar 

  13. Xu, Z.S., Shi, X.L., Zhai, W.Z., Yao, J., Song, S.Y., Zhang, Q.X.: Preparation and tribological properties of TiAl matrix composites reinforced by multilayer graphene. Carbon 67, 168–177 (2014)

    Article  Google Scholar 

  14. American Society for Testing and Materials, Standard test method for vickers hardness of metallic materials, ASTM E92-82, e2 (2003)

  15. American Society for Testing and Materials. Standard test methods for density of compacted or sintered powder metallurgy (PM) products using Archimedes’ principle, ASTM B962-08, (2008)

  16. American Society for Testing and Materials, Standard test method for wear testing with a pin-on-disk apparatus, ASTM G99-95, (1995)

  17. Shi, X., Xu, Z.S., Wang, M., Zhai, W.Z., Yao, W.Z., Song, J.: Tribological behavior of TiAl matrix self-lubricating composites containing silver from 25 to 800 °C. Wear 303, 486–494 (2013)

    Article  Google Scholar 

  18. Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Piscanec, S.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)

    Article  Google Scholar 

  19. Dresselhaus, M.S., Jorio, A., Hofmann, M., Dresselhaus, G., Saito, R.: Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 10, 751–758 (2010)

    Article  Google Scholar 

  20. Zhai, W.Z., Shi, X.L., Wang, M., Xu, Z.S.: Grain refinement: a mechanism for graphene nanoplatelets to reduce friction and wear of Ni3Al matrix self-lubricating composites. Wear 310, 33–40 (2013)

    Article  Google Scholar 

  21. Gedler, G., Antunes, M., Realinho, V., Velasco, J.I.: Thermal stability of polycarbonate graphene nanocomposite foams. Polym. Degrad. Stab. 97, 1297–1304 (2012)

    Article  Google Scholar 

  22. Nieto, A., Kumar, A., Lahiri, D., Zhang, C., Seal, S., Agarwal, A.: Oxidation behavior of graphene nanoplatelet reinforced tantalum carbide composites in high temperature plasma flow. Carbon 67, 398–408 (2014)

    Article  Google Scholar 

  23. Chen, S., Brown, L., Levendorf, M., Cai, W., Ju, S.Y., Edgeworth, J.: Oxidation resistance of graphene coated Cu and Cu/Ni alloy. ACS Nano 5, 1321–1327 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51275370); the National Natural Science Foundation of China (51210008); the Nature Science Foundation of Hubei Province (2012FFB05104); the Project for Science and Technology Plan of Wuhan City (2013010501010139); the Academic Leader Program of Wuhan City (201150530146); and the Project for Teaching and Research project of Wuhan University of Technology (2012016). The authors also wish to gratefully thank the Material Research and Testing Center of Wuhan University of Technology for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiaoxin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Zhang, Q., Jing, P. et al. High-Temperature Tribological Performance of TiAl Matrix Composites Reinforced by Multilayer Graphene. Tribol Lett 58, 3 (2015). https://doi.org/10.1007/s11249-015-0482-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-015-0482-9

Keywords

Navigation