Skip to main content
Log in

Tribochemistry of MoS3 Nanoparticle Coatings

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The tribology of nanoparticles based on transition metal dichalcogenides has been studied extensively. However, evaluation of metal chalcogenides with other stoichiometries has been lacking. We have studied the friction, endurance, and tribochemistry of bonded molybdenum trisulfide (MoS3) nanoparticle-based coatings for the first time. A facile aqueous chemistry method was used to fabricate the MoS3 nanoparticles. Pin-on-disk tribometry of an MoS3 coating using phenolic resin as the binder was conducted in a dry N2 atmosphere (0.06 % RH, using normal loads of 5 N and 10 N). The results were compared with two types of commercial bonded coatings based on the solid lubricant molybdenum disulfide (MoS2), as well as a bonded coating we formulated with commercial MoS2 nanoparticles. Surprisingly, the MoS3 coating showed similar lubricating ability to the MoS2-based coatings, exhibiting average μ k < 0.05 and endurance greater than a million cycles. To evaluate the tribochemistry occurring in the contact region, tribotesting of an MoS3 coating was halted when steady-state low friction was achieved (i.e., prefailure). Raman spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction on the surface of this wear track showed that the MoS3 had undergone a tribochemical reaction to form the solid lubricant MoS2, which explains the excellent lubricity of the coating. This result opens up the possibility of developing MoS3 nanoparticle-based solid lubricant coatings and MoS3 nanoparticle additives for oils and greases that are synthetically easier and lower cost than formulations based on MoS2 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Rapoport, L., Feldman, Y., Homyonfer, M., Cohen, H., Sloan, J., Hutchison, J.L., Tenne, R.: Inorganic fullerene-like materials as additives to lubricants: structure-function relationship. Wear 225–229, 975–982 (1999)

    Article  Google Scholar 

  2. Rapoport, L., Leshchinsky, V., Lvovsky, M., Lapsker, I., Volovik, Yu., Feldman, Y., Popovitz-Biro, R., Tenne, R.: Superior tribological properties of powder materials with solid lubricant nanoparticles. Wear 255, 794–800 (2003)

    Article  Google Scholar 

  3. Hu, J.J., Bultman, J.E., Zabinski, J.S.: Inorganic fullerene-like nanoparticles produced by arc discharge in water with potential lubricating ability. Tribol. Lett. 17(3), 543–546 (2004)

    Article  Google Scholar 

  4. Sano, N., Wang, H., Chhowalla, M., Alexandrou, I., Amaratunga, G.A.J., Naito, M., Kanki, T.: Fabrication of inorganic molybdenum disulfide fullerenes by arc in water. Chem. Phys. Lett. 368, 331–337 (2003)

    Article  Google Scholar 

  5. Chhowalla, M., Amaratunga, G.A.J.: Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear. Nature 407, 164–167 (2000)

    Article  Google Scholar 

  6. Tian, Y., Zhao, J., Fu, W., Liu, W., Zhu, Y., Wang, Z.: A facile route to synthesis of MoS2 nanorods. Mater. Lett. 59, 3452–3455 (2005)

    Article  Google Scholar 

  7. Zhang, Z.J., Zhang, J., Xue, Q.J.: Synthesis and characterization of a molybdenum disulfide nanocluster. J. Phys. Chem. 98, 12973–12977 (1994)

    Article  Google Scholar 

  8. Pourabbas, B., Jamshidi, B.: Preparation of MoS2 nanoparticles by a modified hydrothermal method and the photo-catalytic activity of MoS2/TiO2 hybrids in photo-oxidation of phenol. Chem. Eng. J. 138, 55–62 (2008)

    Article  Google Scholar 

  9. Afanasiev, P., Xia, G.-F., Berhault, G., Jouguet, B., Lacroix, M.: Surfactant-assisted synthesis of highly dispersed molybdenum sulfide. Chem. Mater. 11, 3216–3219 (1999)

    Article  Google Scholar 

  10. Wu, Z., Wang, D., Sun, A.: Surfactant-assisted fabrication of MoS2 nanospheres. J. Mater. Sci. 45, 182–187 (2010)

    Article  Google Scholar 

  11. Wang, H.W., Skeldon, P., Thompson, G.E., Wood, G.C.: Synthesis of molybdenum disulphide by acidification of ammonium tetrathiomolybdate solutions. J. Mater. Sci. Lett. 15(6), 494–496 (1996)

    Google Scholar 

  12. Parenago, O.P., Bakunin, V.N., Kuz’mina, G.N., Suslov, A.Y., Vedeneeva, L.M.: Molybdenum sulfide nanoparticles as new-type additives to hydrocarbon lubricants. Doklady Chem. 383(1–3), 86–88 (2002)

    Article  Google Scholar 

  13. Bokarev, D.A., Bakunin, V.N., Kuz’mina, G.N., Parenago, O.P.: Highly effective friction modifiers from nano-sized materials. Chem. Technol. Fuels Oils 43(4), 305–310 (2007)

    Article  Google Scholar 

  14. Wang, H.W., Skeldon, P., Thompson, G.E., Wood, G.C.: Synthesis and characterization of molybdenum disulfide formed from ammonium tetrathiomolybdate. J. Mater. Sci. 32, 497–502 (1997)

    Article  Google Scholar 

  15. Weber, Th, Muijsers, J.C., Niemantsverdriet, J.W.: Structure of amorphous MoS3. J. Phys. Chem. 99, 9194–9200 (1995)

    Article  Google Scholar 

  16. Hibble, S.J., Wood, G.B.: Modeling the structure of amorphous MoS3: a neutron diffraction and reverse Monte Carlo study. J. Am. Chem. Soc. 126, 959–965 (2004)

    Article  Google Scholar 

  17. Lince, J.R., Fleischauer, P.D.: Crystallinity of rf-sputtered MoS2 films. J. Mater. Res. 2, 827–838 (1987)

    Article  Google Scholar 

  18. Clauss, F.J.: Solid lubricants and self-lubricating solids, p. 99. Academic Press, New York (1972)

    Google Scholar 

  19. Aerospace Standard SAE AS5528A: Lubricant Application, Solid Film, Heat Cured, Corrosion Inhibiting, Revised July 2009 (SAE Committee E-25, SAE Aerospace)

  20. Bhattacharya, R.N., Lee, C.Y., Pollak, F.H.: Optical study of amorphous MoS3: determination of the fundamental energy gap. J. Non Cryst. Solids 91, 235–242 (1987)

    Article  Google Scholar 

  21. Zabinski, J.S., McDevitt, N.T.: Raman spectra of inorganic compounds related to solid state tribochemical studies, USAF Wright Laboratory Report No. WL-TR-96-4034 (1996)

  22. Chang, C.H., Chan, S.S.: Infrared and raman studies of amorphous MoS3 and poorly crystalline MoS2. J. Catal. 72, 139–148 (1981)

    Article  Google Scholar 

  23. Leung, Y.L., Wong, P.C., Zhou, M.Y., Mitchell, K.A.R., Smith, K.J.: XPS studies of the nitridation of MoO3 thin films on alumina and silica supports. Appl. Surf. Sci. 136, 178–188 (1998)

    Article  Google Scholar 

  24. Li, Z., Gao, L., Zheng, S.: SEM, XPS, and FTIR studies of MoO3 dispersion on mesoporous silicate MCM-41 by calcination. Mater. Lett. 57, 4605–4610 (2003)

    Article  Google Scholar 

  25. NIST X-ray Photoelectron Spectroscopy Database, Version 4.1 (National Institute of Standards and Technology, Gaithersburg, 2012). http://srdata.nist.gov/xps/. (Although this database generally gives multiple values for each species and transition, good results can be obtained by using the most prevalent values, and by the database evaluation of data quality for each reference)

  26. Kong, J., Park, K.T., Miller, A.C., Klier, K.: Molybdenum disulfide single crystal (0002) plane XPS spectra. Surf. Sci. Spectra 7, 69–74 (2000)

    Article  Google Scholar 

  27. Schroeder, T., Zegenhagen, J., Magg, N., Immaraporn, B., Freund, H.-J.: Formation of a faceted MoO2 epilayer on Mo (1 1 2) studied by XPS, UPS and STM. Surf. Sci. 552, 85–97 (2004)

    Article  Google Scholar 

  28. Benoist, L., Gonbeau, D., Pfister-Guillouzo, G., Schmidt, E., Meunier, G., Levasseur, A.: X-ray photoelectron spectroscopy characterization of amorphous molybdenum oxysulfide thin films. Thin Solid Films 258, 110–114 (1995)

    Article  Google Scholar 

  29. Muijsers, J.C., Weber, Th., van Hardeveld, R.M., Zandbergen, H.W., Niemantsverdriet, J.W.: Sulfidation study of molybdenum oxide using MoO3/SiO2/Si(100) model catalysts and MoIV 3-sulfur cluster compounds. J. Catal. 157, 698–705 (1995)

    Article  Google Scholar 

  30. Brown, N.M.D., Cui, N., McKinley, A.: An XPS study of the surface modification of natural MoS2 following treatment in an RF-oxygen plasma. Appl. Surf. Sci. 134, 11–21 (1998)

    Article  Google Scholar 

  31. Galtayries, A., Wisniewski, S., Grimblot, J.: Formation of thin oxide and sulphide films on polycrystalline molybdenum foils: characterization by XPS and surface potential variations. J. Electron Spectros. Relat. Phenomena 87, 31–44 (1997)

    Article  Google Scholar 

  32. Liang, K.S., deNeufville, J.P., Jacobson, A.J., Chiannelli, R.R.: Structure of amorphous transition metal sulfides. J. Non Cryst. Solids 35–36, 1249–1254 (1980)

    Article  Google Scholar 

  33. Wang, H.W., Skeldon, P., Thompson, G.E.: Tribological enhancement of aluminum by porous anodic films containing solid lubricants of MoS2 precursors. Tribol. Trans. 42(1), 202–209 (1999)

    Article  Google Scholar 

  34. Iranmahboob, J., Gardner, S.D., Toghiani, H., Hill, D.O.: XPS study of molybdenum sulfide catalyst exposed to CO and H2. J. Coll. Interf. Sci. 270, 123–126 (2004)

    Article  Google Scholar 

  35. Baker, M.A., Gilmore, R., Lenardi, C., Gissler, W.: XPS investigation of preferential sputtering of S from MoS2 and determination of MoSx stoichiometry from Mo and S peak positions. Appl. Surf. Sci. 150, 255–262 (1999)

    Article  Google Scholar 

  36. Buck, V.: Lattice parameters of sputtered MoS2 films. Thin Solid Films 198, 157–167 (1991)

    Article  Google Scholar 

  37. Kelley, K.K.: Contributions to the data on theoretical metallurgy. VII. The thermodynamic properties of sulphur and its inorganic compounds, United States Bureau of Mines Bull. 406 (1937)

Download references

Acknowledgments

This work was funded in part by The Aerospace Corporation’s Sustained Experimentation and Research for Program Applications (SERPA) program. We gratefully acknowledge Dowd and Guild, Inc. for supplying a sample of Cytec Phenodur® PR 515/60LG Phenolic resin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey R. Lince.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lince, J.R., Pluntze, A.M., Jackson, S.A. et al. Tribochemistry of MoS3 Nanoparticle Coatings. Tribol Lett 53, 543–554 (2014). https://doi.org/10.1007/s11249-014-0293-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-014-0293-4

Keywords

Navigation