Skip to main content
Log in

Modelling the Sliding Behaviour of Tribofilms Forming During Automotive Braking: Impact of Loading Parameters and Property Range of Constituents

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The impact of pressure, sliding velocity and property variation of constituents on the sliding behaviour of a model tribofilm was studied with the method of movable cellular automata (MCA). Whereas a clear pressure dependency of the coefficient of friction (COF) was always observed and could be correlated with the structure formation in terms of varying thickness of a mechanically mixed layer, the impact of the other parameters was either negligible or rather weak. Only if a brittle-to-ductile transition of the oxide-based tribofilm was assumed, a significant decrease in the COF level was predicted. Temperature-dependent property changes can be neglected during MCA modelling, unless this transition takes place. For magnetite-based tribofilms, the transition temperature is beyond 800°C, i.e. a temperature leading to fading effects during braking anyway. Thus, it could be concluded that, except for very severe braking conditions, sliding simulations with the MCA method yield meaningful results without considering temperature-dependent mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Jacko, M.G., Tsang, P.H.S., Rhee, S.K.: Wear debris compaction and friction film formation of polymer composites. Wear 133, 23–38 (1989)

    Article  Google Scholar 

  2. Chang, D., Stachowiak, G.V.: Review of automotive brake friction materials. J. Automot. Eng. 218, 953–966 (2004)

    Article  Google Scholar 

  3. Yi, G., Yang, F.: Mechanical and tribological properties of phenolic resin based friction composites filled with several inorganic fillers. Wear 262, 121–129 (2007)

    Article  Google Scholar 

  4. Kukutschová, J., Roubíček, V., Malachová, K., Pavlíčková, Z., Holuša, R., Kubačková, J., Mička, V., MacCrimmon, D., Filip, P.: Wear mechanism in automotive brake materials, wear debris and its potential environmental impact. Wear 267, 807–817 (2009)

    Article  Google Scholar 

  5. Gudmand-Høyer, L., Bach, A., Nielsen, G.T., Morgen, P.: Tribological properties of automotive disc brakes with solid lubricants. Wear 232, 168–175 (1999)

    Article  Google Scholar 

  6. Cho, M.H., Cho, K.H., Kim, S.J., Kim, D.H., Jang, H.: The role of transfer layers on friction characteristics in the sliding interface between friction materials against gray cast iron brake disks. Tribol. Lett. 20, 101–108 (2005)

    Article  Google Scholar 

  7. Kumar, M., Satapathy, B.K., Patnaik, A., Kolluri, D.K., Tomar, B.S.: Hybrid composite friction materials reinforced with combination of potassium titanate whisker and aramid filler: assessment of fade and recovery performance. Tribol. Int. 44, 359–367 (2011)

    Article  Google Scholar 

  8. Bijwe, J., Aranganathan, N., Sharma, S., Dureja, N., Kumar, R.: Nano-abrasives in friction materials-influence on tribological properties. Wear 296, 693–701 (2012)

    Article  Google Scholar 

  9. Blau, P.J., McLaughlin, J.C.: Effects of water films and sliding speed on the frictional behaviour of truck disc brake materials. Tribol. Int. 36, 709–715 (2003)

    Article  Google Scholar 

  10. Matĕjka, V., Lu, Y., Jiao, L., Huang, L., Martynková, G.S., Tomášek, V.: Effects of silicon carbide particle size on friction-wear properties of friction composites designed for car brake lining applications. Tribol. Int. 43, 144–151 (2010)

    Article  Google Scholar 

  11. Österle, W., Kloß, H., Urban, I., Dmitriev, A.I.: Towards a better understanding of brake friction materials. Wear 263, 1189–1201 (2007)

    Article  Google Scholar 

  12. Dmitriev, A.I., Österle, W., Kloß, H.: Numerical simulation of typical contact situations of brake friction materials. Tribol. Int. 41, 1–8 (2008)

    Article  Google Scholar 

  13. Dmitriev, A.I., Smolin, A.Y., Psakhie, S.G., Österle, W., Kloss, H., Popov, V.L.: Computer modeling of tribological contacts by the example of the automotive brake friction pair. Phys. Mesomech. 11, 73–84 (2008)

    Article  Google Scholar 

  14. Österle, W., Kloß, H., Dmitriev, A.I.: Friction control during automotive braking—experimental observations and simulation at the nanometer scale. Tribol. Mater. Surf. Interfaces 3, 196–202 (2009)

    Article  Google Scholar 

  15. Dmitriev, A.I., Österle, W.: Modeling of brake pad-disc interface with emphasis to dynamics and deformation of structures. Tribol. Int. 43, 719–727 (2010)

    Article  Google Scholar 

  16. Österle, W.C., Prietzel, C., Dmitriev, A.I.: Investigation of surface film nanostructure and assessment of its impact on friction force stabilization during automotive braking. Int. J. Mater. Res. 101, 669–675 (2010)

    Article  Google Scholar 

  17. Österle, W., Kloß, H., Prietzel, C., Simon, S., Dmitriev, A.I.: On the role of copper in brake friction materials. Tribol. Int. 43, 2317–2326 (2010)

    Article  Google Scholar 

  18. Österle, W., Dmitriev, A.I.: Functionality of conventional brake friction materials–perceptions from findings observed at different length scales. Wear 271, 2198–2207 (2011)

    Article  Google Scholar 

  19. Österle, W., Dmitriev, A.I., Kloß, H.: Possible impacts of third body nanostructure on friction performance during dry sliding determined by computer simulation based on the method of movable cellular automata. Trib. Int. 48, 128–136 (2012)

    Article  Google Scholar 

  20. Österle, W., Dmitriev, A.I., Kloß, H.: Does ultra-mild wear play any role in dry friction applications, such as automotive braking? Faraday Discuss. 156, 159–171 (2012)

    Article  Google Scholar 

  21. Österle, W., Dmitriev, A.I., Orts-Gil, G., Schneider, T., Ren, H., Sun, X.: Verification of nanometre-scale modelling of tribofilm sliding behaviour. Tribol. Int. 62, 155–162 (2013)

    Article  Google Scholar 

  22. Österle, W., Dmitriev, A.I., Kloß, H.: Assessment of sliding friction of a nanostructured solid lubricant film by numerical simulation with the method of movable cellular automata (MCA). Proc. World Tribol. Congr. 2013, Torino, Italy, September 8-13, (2013)

  23. Gardner, M.: Mathematical games. Sci. Am. 223, 120–123 (1970)

    Article  Google Scholar 

  24. Cundall, P.A., Strack, O.D.I.: A discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  25. Greenspan, D.: Computer studies of interactions of particles with differing masses. J. Comput. Appl. Math. 3, 145–154 (1977)

    Article  Google Scholar 

  26. Psakhie, S.G., Horie, Y., Ostermeyer, G.P., Korostelev, S.Y., Smolin, A.Y., Shilko, E.V., Dmitriev, A.I., Blatnik, S., Spegel, M., Zavsek, S.: Movable cellular automata method for simulating materials with mesostructure. Theor. Appl. Fract. Mech. 37, 311–334 (2001)

    Article  Google Scholar 

  27. Psakhie, S.G., Ostermeyer, G.P., Dmitriev, A.I., Shilko, E.V., Smolin, A.Y., Korostelev, S.Y.: Method of movable cellular automata as a new trend of discrete computational mechanics. I. Theoretical description. Phys. Mesomech. 3, 5–12 (2000). (English translations published in Russia)

    Google Scholar 

  28. Daw, M.S., Foiles, S.M., Baskes, M.I.: The embedded-atom method: a review of theory and applications. Mater. Sci. Rep. 9, 251–310 (1993)

    Article  Google Scholar 

  29. Potyondy, D.O., Cundall, P.A.: A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 41(8), 1329 (2004)

    Article  Google Scholar 

  30. Love, A.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1927)

    Google Scholar 

  31. Psakhie, S.G., Shilko, E.V., Smolin, A.Y., Dimaki, A.V., Dmitriev, A.I., Konovalenko, I.S., Astafurov, S.V., Zavsek, S.: Approach to simulation of deformation and fracture of hierarchically organized heterogeneous media, including contrast media. Phys. Mesomech. 14, 224–248 (2011)

    Article  Google Scholar 

  32. Wiener, N., Rosenbluth, A.: The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. Arch. Inst. Cardiol. Mex. 16, 205–265 (1946)

    Google Scholar 

  33. Popov, V.L., Psakhie, S.G., Dmitriev, A.I., Shilko, E.V.: Quasi-fluid nano-layers at the interface between rubbing bodies: simulation by MCA. Wear 254, 901–906 (2003)

    Article  Google Scholar 

  34. Hidaka, Y., Anraku, T., Otsuka, N.: Tensile deformation of iron oxides at 600–1250°C. Oxid. Met. 58, 469–485 (2002)

    Article  Google Scholar 

  35. European Carbon and Graphite Association (ECGA): The element C. http://www.carbonandgraphite.org/pdf/the_element_c.pdf

  36. Stone, T.W., Horstemeyer, M.F.: Length scale effects of friction in particle compaction using atomistic simulations and a friction scaling model. J.Nanopart.Res. 14 (2012) doi:10.1007/s111051-012-1121-0

  37. Martin, J.M., Onodera, T., Minfray, C., Dassenoy, F., Miyamoto, A.: The origin of anti-wear chemistry of ZDDP. Faraday Discuss. 156, 311–323 (2012)

    Article  Google Scholar 

  38. Kemmer, H.A.: Investigation of the friction behaviour of automotive brakes through experiments and tribological modelling. PhD thesis University Paderborn ISBN 3-00-011230-8 (2002)

  39. Iordanoff, I., Fillot, N., Berthier, Y.: Numerical study of a thin layer of cohesive particles under plane shearing. Powder Technol. 159, 46–54 (2005)

    Article  Google Scholar 

  40. Fillot, N., Iordanoff, I., Berthier, Y.: Modelling third body flows with a discrete element method—a tool for understanding wear with adhesive particles. Tribol. Int. 40, 973–981 (2007)

    Article  Google Scholar 

  41. Renouf, M., Massi, F., Fillot, N., Saulot, A.: Numerical Tribology of a dry contact. Tribol. Int. 44, 834–844 (2011)

    Article  Google Scholar 

  42. Ostermeyer, G.P., Müller, M.: New insights into the tribology of brake systems. Automob. Eng. 222, 1167–1200 (2008)

    Article  Google Scholar 

  43. Dick, T., Cailletaud, G.: Analytic and FE based estimations of the coefficient of friction of composite surfaces. Wear 260, 1305–1316 (2006)

    Article  Google Scholar 

  44. Wahlström, J.: Simulation of airborne wear particles from disc brakes, in PhD-thesis KTH, Stockholm (2011), ISBN 978-91-7415-871-7 and SAE Technical Paper 2009-01-3040 (2009)

  45. Österle, W., Kloß, H., Dmitriev, A.I.: Modeling of friction evolution and assessment of impacts on vibration excitation at the pad-disc interface. Proc. 26th SAE Anu. Brake Colloq., Report 08BC-0090, SAE International (2008)

  46. Eriksson, M.: Friction and contact phenomena of disc brakes related to squeal. PhD-thesis Uppsala University, Acta Universitatis Uppsaliensis ISBN 91-554-4716-3 (2000)

Download references

Acknowledgments

This work was funded by the German Research Foundation (DFG), Contract No. OS77/19-1 and supported by the Russian Academy of Science (SB RAS), Program No. III.23.2.4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Österle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dmitriev, A.I., Österle, W. Modelling the Sliding Behaviour of Tribofilms Forming During Automotive Braking: Impact of Loading Parameters and Property Range of Constituents. Tribol Lett 53, 337–351 (2014). https://doi.org/10.1007/s11249-013-0274-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-013-0274-z

Keywords

Navigation