Skip to main content
Log in

Formation and Oxidation of Linear Carbon Chains and Their Role in the Wear of Carbon Materials

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The atomic-scale processes taking place during the sliding of diamond and diamond-like carbon surfaces are investigated using classical molecular dynamics simulations. During the initial sliding stage, diamond surfaces undergo an amorphization process, while an sp 3 to sp 2 conversion takes place in tetrahedral amorphous carbon (ta-C) and amorphous hydrocarbon (a-C:H) surface layers. Upon separation of the sliding samples, the interface fails. A rather smooth failure occurs for a-C:H, where the hydrogen atoms present in the bulk passivate the chemically active carbon dangling bonds. Conversely, sp-hybridized carbon chains are observed to form on diamond and ta-C surfaces. These carbynoid structures are known to undergo a fast degradation process when in contact with oxygen. Using quantum-accurate density functional theory simulations, we present a possible mechanism for the oxygen-induced degradation of the carbon chains, leading to oxidative wear of the sp phase on diamond and ta-C surfaces upon exposure to air. Oxygen molecules chemisorb on C–C bonds of the chains, triggering the cleavage of the chains through concerted O–O and C–C bond-breaking reactions. A similar reaction caused by adsorption of water molecules on the carbon chains is ruled out on energetic grounds. Further O2 adsorption causes the progressive shortening of the resulting, O-terminated, chain fragments through the same O–O and C–C bond breaking mechanism accompanied by the formation of CO2 molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Robbins, M.O., Müser, M.H.: Computer simulations of friction, lubrication, and wear. In Bhushan B. (ed.) Modern Tribology Handbook, pp. 717–765. CRC Press, Boca Raton (2001)

    Google Scholar 

  2. Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids, 2nd edn. Oxford University Press, Oxford (1950)

    Google Scholar 

  3. Meng, H., Ludema, K.: Wear models and predictive equations: their form and content. Wear 181–183, 443–457 (1995)

    Article  Google Scholar 

  4. Sawyer, W.G., Wahl, K.J.: Accessing inaccessible interfaces: in situ approaches to materials tribology. MRS Bull. 33, 1145–1150 (2008)

    Article  Google Scholar 

  5. Dietzel, D., Ritter, C., Mönninghoff, T., Fuchs, H., Schirmeisen, A., Schwarz, U.D.: Frictional duality observed during nanoparticle sliding. Phys. Rev. Lett. 101, 125505 (2008)

    Article  Google Scholar 

  6. Dienwiebel, M., Verhoeven, G.S., Pradeep, N., Frenken, J.W.M., Heimberg, J.A., Zandbergen, H.W.: Superlubricity of graphite. Phys. Rev. Lett. 92, 126101 (2004)

    Article  Google Scholar 

  7. Bhaskaran, H., Gotsmann, B., Sebastian, A., Drechsler, U., Lantz, M.A., Despont, M., Jaroenapibal, P., Carpick, R.W., Chen, Y., Sridharan, K.: Ultralow nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like carbon. Nat. Nanotechnol. 5, 181 (2010)

    Article  CAS  Google Scholar 

  8. Gotsmann, B., Lantz, M.A.: Atomistic wear in a single asperity sliding contact. Phys. Rev. Lett. 101, 125501 (2008)

    Article  Google Scholar 

  9. Archard, J.F., Hirst, W.: The wear of metals under unlubricated conditions. Proc. R. Soc. Lond. A 236, 397–410 (1956)

    Article  Google Scholar 

  10. Quinn, T.F.J., Sullivan, J.L., Rowson, D.M.: Origins and development of oxidational wear at low ambient temperatures. Wear 94, 175–191 (1984)

    Article  CAS  Google Scholar 

  11. Morita, T., Banshoya, K., Tsutsumoto, T., Murase, Y.: Corrosive-wear characteristics of diamond-coated cemented carbide tools. J. Wood Sci. 45, 463–469 (1999)

    Article  CAS  Google Scholar 

  12. Chang, H.W., Rusnak, R.M.: Contribution of oxidation to the wear of carbon–carbon composites. Carbon 16, 309–312 (1978)

    Article  CAS  Google Scholar 

  13. Gouider, M., Berthier, Y., Jacquemard, P., Rousseau, B., Bonnamy, S., Estrade-Szwarckopf, H.: Mass spectrometry during C/C composite friction: carbon oxidation associated with high friction coefficient and high wear rate. Wear 256, 1082–1087 (2004)

    Article  CAS  Google Scholar 

  14. Kasem, H., Bonnamy, S., Rousseau, B., Estrade-Szwarckopf, H., Berthier, Y., Jacquemard, P.: Interdependence between wear process, size of detached particles and CO2 production during carbon/carbon composite friction. Wear 263, 1220–1229 (2007)

    Article  CAS  Google Scholar 

  15. McKee, D.W., Savage, R.H.: Chemical factors in carbon brush wear. Wear 22, 193–214 (1972)

    Article  CAS  Google Scholar 

  16. Pastewka, L., Moser, S., Gumbsch, P., Moseler, M.: Anisotropic mechanical amorphization drives wear in diamond. Nat. Mater. 10, 34–38 (2011)

    Article  CAS  Google Scholar 

  17. Kim, S.: Synthesis and structural analysis of one-dimensional sp-hybridized carbon chain molecules. Angew. Chem. Int. Ed. 48, 7740–7743 (2009)

    Article  CAS  Google Scholar 

  18. Whittaker, A.G.: Carbyne forms of carbon: evidence for their existence. Science 229, 485–486 (1985)

    Article  CAS  Google Scholar 

  19. Casari, C., Li Bassi, A., Ravagnan, L., Siviero, F., Lenardi, C., Piseri, P., Bongiorno, G., Bottani, C.E., Milani, P.: Chemical and thermal stability of carbyne-like structures in cluster-assembled carbon films. Phys. Rev. B 69, 075422 (2004)

    Article  Google Scholar 

  20. Casari, C., Libassi, A., Ravagnan, L., Siviero, F., Lenardi, C., Barborini, E., Piseri, P., Milani, P., Bottani, C.: Gas exposure and thermal stability of linear carbon chains in nanostructured carbon films investigated by in situ Raman spectroscopy. Carbon 42, 1103–1106 (2004)

    Article  CAS  Google Scholar 

  21. Hitchiner, M.P., Wilks, E.M., Wilks, J.: The polishing of diamond and diamond composite materials. Wear 94, 103–120 (1984)

    Article  Google Scholar 

  22. Pastewka, L., Moser, S., Moseler, M.: Atomistic insights into the running-in, lubrication, and failure of hydrogenated diamond-like carbon coatings. Tribol. Lett. 39, 49–61 (2010)

    Article  CAS  Google Scholar 

  23. Pastewka, L., Moser, S., Moseler, M., Blug, B., Meier, S., Hollstein, T., Gumbsch, P.: The running-in of amorphous hydrocarbon tribocoatings: a comparison between experiment and molecular dynamics simulations. Int. J. Mater. Res. 99, 1136–1143 (2008)

    CAS  Google Scholar 

  24. Peters, E.A.J.F.: Elimination of time step effects in DPD. Europhys. Lett. 66, 311–317 (2004)

    Article  CAS  Google Scholar 

  25. Hird, J.R., Field, J.E.: Diamond polishing. Proc. R. Soc. A Math. Phys. 460, 3547–3568 (2004)

    Article  CAS  Google Scholar 

  26. Pastewka, L., Pou, P., Prez, R., Gumbsch, P., Moseler, M.: Describing bond-breaking processes by reactive potentials: importance of an environment-dependent interaction range. Phys. Rev. B 78, 78–81 (2008)

    Article  Google Scholar 

  27. Colombi Ciacchi, L., Payne, M.C.: First-principles molecular-dynamics study of native oxide growth on Si(001). Phys. Rev. Lett. 95, 196101 (2005)

    Article  Google Scholar 

  28. Carbogno, C., Behler, J., Gross, A., Reuter, K.: Fingerprints for spin-selection rules in the interaction dynamics of O2 at Al(111). Phys. Rev. Lett. 101, 096104 (2008)

    Article  Google Scholar 

  29. Mortensen, J.J., Hansen, L.B., Jacobsen, K.W.: A real-space grid implementation of the Projector Augmented Wave method. Phys. Rev. B 71, 035109 (2005)

    Article  Google Scholar 

  30. Enkovaara, J., Rostgaard, C., Mortensen, J. J., Chen, J., Dulak, M., Ferrighi, L., Gavnholt, J., Glinsvad, C., Haikola, V., Hansen, H.A., Kristoffersen, H.H., Kuisma, M., Larsen, A.H., Lehtovaara, L., Ljungberg, M., Lopez-Acevedo, O., Moses, P.G., Ojanen, J., Olsen, T., Petzold, V., Romero, N.A., Stausholm-Moller, J., Strange, M., Tritsaris, G.A., Vanin, M., Walter, M., Hammer, B., Häkkinen, H., Madsen, G.K.H., Nieminen, R.M., Norskov, J.K., Puska, M., Rantala, T.T., Schiotz, J., Thygesen, K.S., Jacobsen, K.W.: Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J. Phys. Condens. Matter 22, 253202 (2010)

    Article  CAS  Google Scholar 

  31. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  CAS  Google Scholar 

  32. Bitzek, E., Koskinen, P., Gähler, F., Moseler, M., Gumbsch, P.: Structural relaxation made simple. Phys. Rev. Lett. 97, 170201 (2006)

    Article  Google Scholar 

  33. Tang, W., Sanville, E., Henkelman, G.: A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 21, 084204 (2009)

    Article  CAS  Google Scholar 

  34. Henkelman, G., Jónsson, H.: Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978 (2000)

    Article  CAS  Google Scholar 

  35. Landman, U., Luedtke, W.D., Burnham, N.A., Colton, R.J.: Atomistic mechanisms and dynamics of adhesion, nanoindentation, and fracture. Science 248, 454–461 (1990)

    Article  CAS  Google Scholar 

  36. Ravagnan, L., Siviero, F., Lenardi, C., Piseri, P., Barborini, E., Milani, P., Casari, C.S., Li Bassi, A., Bottani, C.E.: Cluster-beam deposition and in situ characterization of carbyne-rich carbon films. Phys. Rev. Lett. 89, 285506 (2002)

    Article  CAS  Google Scholar 

  37. Sowa, M.B., Anderson, S.L.: Oxidation of small carbon cluster ions by O2: effects of structure on the reaction mechanism. J. Chem. Phys. 97, 9164 (1992)

    Article  Google Scholar 

  38. Gu, X., Kaiser, R.I., Mebel, A.M.: Chemistry of energetically activated cumulenes—from allene (H2CCCH2) to hexapentaene (H2CCCCCCH2). ChemPhysChem 9, 350–369 (2008)

    Article  CAS  Google Scholar 

  39. Ravagnan, L., Manini, N., Cinquanta, E., Onida, G., Sangalli, D., Motta, C., Devetta, M., Bordoni, A., Piseri, P., Milani, P.: Effect of axial torsion on sp carbon atomic wires. Phys. Rev. Lett. 102, 245502 (2009)

    Article  Google Scholar 

  40. Heimann, R., Kleiman, J.: A unified structural approach to linear carbon polytypes. Nature 306, 164 (1983)

    Article  CAS  Google Scholar 

  41. Moras, G., Pastewka, L., Walter, M., Schnagl, J., Gumbsch, P., Moseler, M.: Progressive shortening of sp-hybridized carbon chains through oxygen-induced cleavage. Submitted (2011)

  42. Zakharchenko, K.V., Fasolino, A., Los, J.H., Katsnelson, M.I.: Melting of graphene: from two to one dimension. J. Phys. Condens. Matter 23, 202202 (2011)

    Article  CAS  Google Scholar 

  43. Kim, S.G., Tománek, D.: Melting the fullerenes: a molecular dynamics study. Phys. Rev. Lett. 72, 2418–2421 (1994)

    Article  CAS  Google Scholar 

  44. Ohnishi, H., Kondo, Y., Takayanagi, K.: Quantized conductance through individual rows of suspended gold atoms. Nature 395, 780–783 (1998)

    Article  CAS  Google Scholar 

  45. Yanson, A.I., Bollinger, G.R., van den Brom, H.E., Agraït, N., van Ruitenbeek, J.M.: Formation and manipulation of a metallic wire of single gold atoms. Nature 395, 783–785 (1998)

    Article  CAS  Google Scholar 

  46. Chang, H.W.: Correlation of wear with oxidation of carbon–carbon composites. Wear 80, 7–14 (1982)

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Michael Walter and Johann Schnagl for helpful discussions. We acknowledge financial support from the German Federal Ministry of Education and Research (BMBF grant 03X2512G), from the German Federal Ministry of Economics and Technology (BMWi grant 0327499A), and from the European Commission (Marie-Curie International Outgoing Fellowship for L.P.). The simulations were carried out on computer facilities at Fraunhofer IWM and JSC Jülich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianpietro Moras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moras, G., Pastewka, L., Gumbsch, P. et al. Formation and Oxidation of Linear Carbon Chains and Their Role in the Wear of Carbon Materials. Tribol Lett 44, 355 (2011). https://doi.org/10.1007/s11249-011-9864-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-011-9864-9

Keywords

Profiles

  1. Lars Pastewka