Skip to main content
Log in

Molecular Dynamics Simulation of Rolling Friction Using Nanosize Spheres

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The rolling resistance of a sphere on an atomically flat surface was studied by molecular dynamics simulation carried out by rolling a rigid Ni sphere on a copper (100) surface. Spheres of 6 and 12 nm diameters were used for rolling simulations after indentation up to 10 Å in depth and the computations carried out using embedded atom potentials of Ni and Cu, assuming either active molecular interaction at the contacts (normal potentials) or the presence of a passivation layer on the sphere. Results showed that the sphere size, penetration depth, and adhesion at the rolling interface strongly affected the rolling friction. When molecular interactions were allowed at the rolling contacts, the average rolling friction coefficient was higher and severe oscillations in the friction force was observed. On the other hand, a sphere with a passivation layer produced more dislocations in the copper substrate during rolling and the motion of the dislocations affected the coefficient of rolling friction and the size of the friction force oscillations. This work also suggested that rolling friction at the nanoscale level was similar to the macroscopic rolling condition during strain hardening of metals due to severe dislocation multiplication underneath the nanosphere in nanorolling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Eldredge, K.R., Tabor, D.: The mechanism of rolling friction. I. The plastic range. Proc. R. Soc. Lond. 229, 181–198 (1955)

    Article  ADS  Google Scholar 

  2. Tabor, D.: The mechanism of rolling friction. II. The elastic range. Proc. R. Soc. Lond. 229, 198–220 (1955)

    ADS  Google Scholar 

  3. Greenwood, J.A., Minshall, H., Tabor, D.: Hysteresis losses in rolling and sliding friction. Proc. R. Soc. Lond. 259, 480–507 (1961)

    ADS  Google Scholar 

  4. Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids. Oxford University Press, Oxford (1968)

    Google Scholar 

  5. Stachowiak, G.W., Batchelor, A.W.: Engineering Tribology, 2nd edn. Butterworth-Heinmann, Oxford (2001)

    Google Scholar 

  6. Bhushan, B.: Introduction to Tribology. Wiley, New York (2002)

    Google Scholar 

  7. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  8. Kendal, K.: Rolling friction and adhesion between smooth solids. Wear 33, 351–358 (1975). doi:10.1016/0043-1648(75)90288-4

    Article  Google Scholar 

  9. Blom, D.G., Bueche, A.M.: Theory of rolling friction for spheres. J. Appl. Phys. 30, 1725–1730 (1959). doi:10.1063/1.1735043

    Article  ADS  Google Scholar 

  10. Bueche, A.M., Blom, D.G.: Surface friction and dynamic mechanical properties of polymers. Wear 2, 168–182 (1958/1959). doi:10.1016/0043-1648(59)90002-X

    Article  Google Scholar 

  11. Reynolds, O.: On rolling friction. Philos. Trans. R. Soc. Lond. 166, 155–174 (1876). doi:10.1098/rstl.1876.0006

    Article  Google Scholar 

  12. Tomlinson, G.: The molecular theory of friction. Philos. Mag. 7, 905–916 (1929)

    CAS  Google Scholar 

  13. Heathcote, H.L.: The ball bearing: in the making, under test and on service. Proc. Inst. Auto. Eng. 15, 569–702 (1921)

    Google Scholar 

  14. Jeng, Y., Tsai, P., Fang, T.: Molecular dynamics studies of atomic-scale friction for roller-on-slab systems with different rolling-sliding conditions. Nanotechnology 16, 1941–1949 (2005). doi:10.1088/0957-4484/16/9/087

    Article  ADS  Google Scholar 

  15. Schall, J.D., Brenner, D.W.: Molecular dynamics simulations of carbon nanotube rolling and sliding on graphite. Mol. Simul. 25, 73–79 (2000). doi:10.1080/08927020008044113

    Article  CAS  Google Scholar 

  16. Heo, S., Sinnott, S.B.: Effect of molecular interactions on carbon nanotube friction. J. Appl. Phys. 102, 064307-1-6 (2007)

    Article  ADS  CAS  Google Scholar 

  17. Bhushan, B., Ling, X., Jungen, A., Hierold, C.: Adhesion and friction of a multi-walled carbon nanotube sliding against single-walled carbon nanotube. Phys. Rev. B 77, 165428-1-12 (2008)

    Article  ADS  CAS  Google Scholar 

  18. Falvo, M.R., Taylor II, R.M., Helser, A., Chi, V., Brooks Jr., F.P., Washburn, S., Superfine, R.: Nanometer-scale rolling and sliding of carbon nanotubes. Nature 397, 236–238 (1999). doi:10.1038/16662

    Article  PubMed  ADS  CAS  Google Scholar 

  19. Haile, J.M.: Molecular dynamics simulation. Wiley, New York (1992)

    Google Scholar 

  20. Foils, S.M., Baskes, M.I., Daw, M.S.: Embedded-atom-potential functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt and their alloys. Phys. Rev. B 33, 7983–7991 (1986). doi:10.1103/PhysRevB.33.7983

    Article  ADS  Google Scholar 

  21. Jang, H., Farkas, D.: Interaction of lattice dislocations with a grain boundary during nanoindentation simulation. Mater. Lett. 61, 868–871 (2007). doi:10.1016/j.matlet.2006.06.004

    Article  CAS  Google Scholar 

  22. Luan, B., Robbins, M.O.: The breakdown of continuum models for mechanical contacts. Nature 435, 929–932 (2005). doi:10.1038/nature03700

    Article  PubMed  ADS  CAS  Google Scholar 

  23. Rabinowicz, E.: Friction and Wear of Materials, 2nd edn. Wiley, New York (1995)

    Google Scholar 

  24. Corcran, S.G., Colton, R.J., Lilleodden, E.T., Gerberich, W.W.: Anomalous plastic deformation at surfaces: nanoindentation of gold single crystals. Phys. Rev. B 55, R16057 (1997). doi:10.1103/PhysRevB.55.R16057

  25. Kim, K.J., Yoon, J.H., Cho, M.H., Jang, H.: Molecular dynamics simulation of dislocation behavior during nanoindentation on a bicrystal with a Σ = 5 (210) grain boundary. Mater. Lett. 60, 3367–3372 (2006). doi:10.1016/j.matlet.2006.03.020

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Korea Science and Engineering Foundation (KOSEF) through the National Research Lab. Program funded by the Ministry of Science and Technology (N. R0A-2007-000-10011-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Jang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, W.G., Cho, K.H. & Jang, H. Molecular Dynamics Simulation of Rolling Friction Using Nanosize Spheres. Tribol Lett 33, 37–43 (2009). https://doi.org/10.1007/s11249-008-9389-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-008-9389-z

Keywords

Navigation