Skip to main content
Log in

Relation Between Inter-Particle Distance (L IPD) and Abrasion in Multiphase Matrix–Carbide Materials

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Five different carbide–matrix coatings (laser claddings) have been investigated about correlation of their specific structural parameters—especially volumetric carbide distribution—with ASTM G65 abrasion wear rates. For this study, the hardphase networks of laser claddings have been characterized by specific structural parameters, such as mean inter-particle distance, mean carbide diameter, carbide area fraction, and matrix hardness. To generate quantitative values for the inter-particle distances a particular method was developed. From regression analyses, it has become evident that wear effects arising from carbide inter-particle distance surpass the influence of carbide diameter and that of carbide fraction. Only minor contribution to abrasive wear rates is related with matrix hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. zum Gahr, K.-H.: Microstructure and wear of materials. Elsevier Science Publishers B.V., Amsterdam (1987)

    Google Scholar 

  2. Van Acker, K., Vanhoyweghen, D., Persoons, R., Vangrunderbeek, J.: Influence of tungsten carbide particle size and distribution on the wear resistance of laser clad WC/Ni coatings. Wear 258, 194–202 (2005). doi:10.1016/j.wear.2004.09.041

    Article  Google Scholar 

  3. Pagounis, E., Lindroos, V.K.: Processing and properties of particulate reinforced steel matrix composites. Mater. Sci. Eng. A 246, 221–234 (1998). doi:10.1016/S0921-5093(97)00710-7

    Article  Google Scholar 

  4. Kirchgaßner, M., Badisch, E., Franek, F.: Behaviour of iron-based hardfacing alloys under abrasion and impact. Wear 265, 772–779 (2008). doi:10.1016/j.wear.2008.01.004

    Article  Google Scholar 

  5. Badisch, E., Kirchgaßner, M.: Influence of welding parameters on microstructure and wear behaviour of a typical NiCrBSi hardfacing alloy reinforced with tungsten carbide. Surf. Coat. Technol 202, 6016–6022 (2008). doi:10.1016/j.surfcoat.2008.06.185

    Article  CAS  Google Scholar 

  6. Doğan, Ö.N., Hawk, J.A., Tylczak, J.H., Wilson, R.D., Govier, R.D.: Wear of titanium carbide reinforced metal matrix composites. Wear 225–229, 758–769 (1999). doi:10.1016/S0043-1648(99)00030-7

    Article  Google Scholar 

  7. Buchely, M.F., Gutierrez, J.C., Leon, L.M., Toro, A.: The effect of microstructure on abrasive wear of hardfacing alloys. Wear 259, 52–61 (2005). doi:10.1016/j.wear.2005.03.002

    Article  CAS  Google Scholar 

  8. Kirchgaßner, M.: Verhalten von Eisenbasis-Hartauftragungen bei abrasiv-schlagendem erosivem Verschleiß, PhD Thesis, Vienna (2008)

  9. Buytoz, S.: Microstructural properties of M7C3 eutectic carbides in Fe–Cr–C alloy. Mater. Lett 60, 605–608 (2006). doi:10.1016/j.matlet.2005.09.046

    Article  CAS  Google Scholar 

  10. Chatterjee, S., Pal, T.K.: Wear behaviour of hardfacing deposits on cast iron. Wear 255, 417–425 (2003). doi:10.1016/S0043-1648(03)00101-7

    Article  CAS  Google Scholar 

  11. Berns, H.: Microstructural properties of wear resistant alloys. Wear 181, 271–279 (1995)

    Google Scholar 

  12. Wang, S.-H., Chen, J.-Y., Xue, L.: A study of the abrasive wear behaviour of laser-clad tool steel coatings. Surf. Coat. Technol 200, 3446–3458 (2006). doi:10.1016/j.surfcoat.2004.10.125

    Article  CAS  Google Scholar 

  13. Badisch, E., Mitterer, C.: Abrasive wear of high speed steels: influence of abrasive particles and primary carbides on wear resistance. Trib. Int 36, 765–770 (2003). doi:10.1016/S0301-679X(03)00058-6

    Article  CAS  Google Scholar 

  14. Zhou, R., Jiang, Y., Lu, D.: The effect of volume fraction of WC particles on erosion resistance of WC reinforced iron matrix surface composites. Wear 255, 134–138 (2003). doi:10.1016/S0043-1648(03)00290-4

    Article  CAS  Google Scholar 

  15. St-Georges, L.: Development and characterization of composite Ni-Cr+WC laser cladding. Wear 263, 562–566 (2007). doi:10.1016/j.wear.2007.02.023

    Article  CAS  Google Scholar 

  16. Lugbauer, M., Kröll, A., Badisch, E., Polak, R., Franek, F.: Thermal sprayed coatings in high-agricultural machinery: properties and wear behavior test routine. In: Proceedings of International Thermal Spray Conference, Seattle (2006)

  17. Lahaye, C.T.W.: Daily routine quantitative assessment of microstructure of steel by image analysis. Mater. Charact 36, 191–202 (1996). doi:10.1016/S1044-5803(96)00051-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was founded from the “Austrian Kplus-Program” (governmental funding program for pre-competitive research) via the Austrian Research Promotion Agency (FFG) and the TecNet Capital GmbH (Province of Niederösterreich) and has been carried out within the “Austrian Center of Competence for Tribology” (AC²T Research GmbH). The authors are also grateful to R. Karner for helpful assistance at quantitative microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Badisch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polak, R., Ilo, S. & Badisch, E. Relation Between Inter-Particle Distance (L IPD) and Abrasion in Multiphase Matrix–Carbide Materials. Tribol Lett 33, 29–35 (2009). https://doi.org/10.1007/s11249-008-9388-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-008-9388-0

Keywords

Navigation