Skip to main content
Log in

Tribological Properties of Phosphor Bronze and Nanocrystalline Nickel Coatings Under PAO + MoDTC and Ionic Liquid Lubricated Condition

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The friction and wear properties of phosphor bronze and nanocrystalline nickel coatings were evaluated using a reciprocating ball-on-plates UMT-2MT sliding tester lubricated with ionic liquid and poly-alpha-olefin containing molybdenum dialkyl dithiocarbamate, respectively. The morphologies of the worn surfaces for the phosphor bronze and nanocrystalline nickel coatings were observed using a scanning electron microscope. The chemical states of several typical elements on the worn surfaces were examined by means of X-ray photoelectron spectroscopy. Results show that the phosphor bronze and nanocrystalline nickel coatings exhibited quite different tribological behaviors under different lubricants. Phosphor bronze plate shows higher friction coefficient (0.14) and wear rate (3.2 × 10−5 mm3/Nm) than nanocrystalline nickel coatings (average friction coefficient is 0.097, wear rate is 1.75 × 10−6 mm3/Nm) under poly-alpha-olefin containing molybdenum dialkyl dithiocarbamate lubricated conditions. The excellent tribological performance of nanocrystalline nickel coatings under above lubricant can be attributed to the formation of MoS2 and MoO3 on the sliding surface. a quite a number of C, O and F products on worn surface of phosphor bronze than NC nickel coatings can improve anti-wear properties while using ionic liquid as lubricant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Waldemar, K., Pawel, P., Lidia, G.: The effect of oil pockets size and distribution on wear in lubricated sliding. Wear 263, 1585–1592 (2007). doi:10.1016/j.wear.2007.01.108

    Article  Google Scholar 

  2. Heide, E., Stama, E., Giraud, H., Lovatob, G., Akdut, N., Clarysse, F., et al.: Wear of aluminium bronze in sliding contact with lubricated stainless steel sheet material. Wear 261, 68–73 (2006). doi:10.1016/j.wear.2005.09.023

    Article  Google Scholar 

  3. Ukonsaari, J.: Wear and friction of synthetic esters in a boundary lubricated journal bearing. Tribol Inter. 36, 821–826 (2003). doi:10.1016/S0301-679X(03)00099-9

    Article  CAS  Google Scholar 

  4. Ukonsaari, J., Blanchet, T., Shaffer, S.: Grease-lubricated wear of aluminum bronze for jackscrew application. Wear 255, 1238–1250 (2003). doi:10.1016/S0043-1648(03)00177-7

    Article  Google Scholar 

  5. Ueno, T., Toyosuchi, M., Takai, Y.: The effects of lubricating oil additives performance of worm gears. Wear 22, 39–58 (1972). doi:10.1016/0043-1648(72)90426-7

    Article  CAS  Google Scholar 

  6. Wang, L., Gao, Y., Xue, Q., Liu, H., Xu, T.: Graded composition and structure in nanocrystalline Ni-Co alloys for decreasing internal stress and improving tribological properties. J. Phys. D Appl. Phys. 38, 1318–1324 (2005). doi:10.1088/0022-3727/38/8/033

    Article  CAS  Google Scholar 

  7. Wang, L., Lin, Y., Zeng, Z., Liu, W., Xue, Q., Hu, L., et al.: Electrochemical corrosion behavior of nanocrystalline Co coatings explained by higher grain boundary density. Electrochim. Acta 52, 4342–4350 (2007). doi:10.1016/j.electacta.2006.12.009

    Article  CAS  Google Scholar 

  8. Wang, L., Gao, Y., Xu, T., Xue, Q.: A comparative study on the tribological behavior of nanocrystalline nickel and cobalt coatings correlated with grain size and phase structure. Mater. Chem. Phys. 99, 96–103 (2006). doi:10.1016/j.matchemphys.2005.10.014

    Article  CAS  Google Scholar 

  9. Jeong, D., Gonzalez, F., Palumbo, G., Erb, U.: The effect of grain size on the wear properties of electrodeposited nanocrystalline nickel coatings. Scr. Mater. 44, 493–499 (2001). doi:10.1016/S1359-6462(00)00625-4

    Article  CAS  Google Scholar 

  10. Hibbard, G., Aust, K., Palumbo, G., Erb, U.: Thermal stability of electrodeposited nanocrystalline cobalt. Scr. Mater. 44, 513–518 (2001). doi:10.1016/S1359-6462(00)00628-X

    Article  CAS  Google Scholar 

  11. Xia, Y., Wang, L., Liu, X., Qiao, Y.: A comparative study on the tribological behavior of nanocrystalline nickel and coarse-grained nickel coatings under ionic liquid lubrication. Tribol. Lett. 30, 151–157 (2008). doi:10.1007/s11249-008-9322-5

    Article  CAS  Google Scholar 

  12. Bonhote, P., Dias, A., Papageorgiou, N., Kalyanasundaram, K., Grätzel, M.: Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem. 35, 1168–1178 (1996). doi:10.1021/ic951325x

    Article  CAS  Google Scholar 

  13. Mu, Z., Liu, W., Zhang, S., Zhou, F.: Functional room-temperature ionic liquids as lubricant for an aluminium-on-steel system. Chem. Lett. 33, 524–525 (2004). doi:10.1246/cl.2004.524

    Article  CAS  Google Scholar 

  14. Qu, J., Truhan, J., Dai, S., Luo, H., Blau, P.: Ionic liquids with ammonium cations as lubricants or additives. Tribol. Lett. 22, 207–214 (2006). doi:10.1007/s11249-006-9081-0

    Article  CAS  Google Scholar 

  15. Mu, Z., Zhou, F., Zhang, S., Liang, Y., Liu, W.: Effect of the functional groups in ionic liquid molecules on the friction and wear behavior of aluminum alloy in lubricated aluminum-on-steel contact. Tribol. Int. 38, 725–731 (2005). doi:10.1016/j.triboint.2004.10.003

    Article  CAS  Google Scholar 

  16. Jimenez, A., Bermudez, M., Iglesias, P., Carrion, F., Martinez-Nicolas, G.: 1-N-alkyl-3-methylimidazolium ionic liquids as neat lubricants and lubricant additives in steel-aluminium contacts. Wear 260, 766–782 (2006). doi:10.1016/j.wear.2005.04.016

    Article  CAS  Google Scholar 

  17. Jimenez, A., Bermudez, M., Carrion, F., Martinez-Nicolas, G.: Room temperature ionic liquids as lubricant additives in steel-aluminium contacts. Influence of sliding velocity, normal load and temperature. Wear 261, 347–359 (2006). doi:10.1016/j.wear.2005.11.004

  18. Phillips, B., Zabinski, J.: Ionic liquid lubrication effects on ceramics in a water environment. Tribol. Lett. 17, 533–541 (2004). doi:10.1023/B:TRIL.0000044501.64351.68

    Article  CAS  Google Scholar 

  19. Omotowa, B., Phillips, B., Zabinski, J., Shreeve, J.: Phosphazenebased ionic liquids: synthesis, temperature-dependent viscosity and effect as additives in water lubrication of silicon nitride ceramics. Inorg. Chem. 43, 5466–5471 (2004). doi:10.1021/ic049483o

    Article  CAS  Google Scholar 

  20. Yu, B., Zhou, F., Liu, W., Liang, Y., Yan, S.: Preparation of functional ionic liquids and tribological investigation of their ultra-thin films. Wear 260, 1076–1080 (2006). doi:10.1016/j.wear.2005.07.021

    Article  CAS  Google Scholar 

  21. Xia, Y., Wang, S., Zhou, F., Wang, H., Lin, Y., Xu, T.: Tribological properties of plasma nitrided stainless steel against SAE52100 steel under ionic liquid lubrication condition. Tribol. Int. 39, 635–640 (2006). doi:10.1016/j.triboint.2005.04.030

    Article  CAS  Google Scholar 

  22. Liu, W., Ye, C., Ou, Z., Sun, D.: Tribological behavior of sialon ceramics sliding against steel lubricated by fluorine-containing oils. Tribol. Int. 35, 503–509 (2002). doi:10.1016/S0301-679X(02)00044-0

    Article  CAS  Google Scholar 

  23. Xia, Y., Shinya, S., Takashi, M., Miki, N., Shi, L., Wang, H.: Ionic liquid lubrication of electrodeposited nickel–Si3N4 composite coatings. Wear 262, 765–771 (2007). doi:10.1016/j.wear.2006.06.015

    Article  CAS  Google Scholar 

  24. Liu, X., Zhou, F., Liang, Y., Liu, W.: Benzotriazole as the additive for ionic liquid lubricant: one pathway towards actual application of ionic liquids. Tribol. Lett. 23, 191–196 (2006). doi:10.1007/s11249-006-9050-7

    Article  CAS  Google Scholar 

  25. Barros, M., Bouchet, J., Raoult, I., Mogne, T., Martin, J., Kasrai, M., et al.: Friction reduction by metal sulfides in boundary lubrication studied by XPS and XANES analyses. Wear 254, 863–870 (2003). doi:10.1016/S0043-1648(03)00237-0

    Article  Google Scholar 

  26. Bouchet, M., Martin, J., Le Mogne, T., Vacher, B., Bilas, P., Vacher, B., et al.: Mechanisms of MoS2 formation by MoDTC in presence of ZnDTP: effect of oxidative degradation. Wear 258, 1643–1650 (2005). doi:10.1016/j.wear.2004.11.019

    Article  Google Scholar 

  27. Xia, Y., Liu, W., Xue, Q.: Tribological properties of P- and N-containing organic compounds as potential extreme-pressure and antiwear additives. Lubr. Sci. 15, 173–183 (2004). doi:10.1002/ls.3010150207

    Article  Google Scholar 

  28. http://www.srdata.nist.gov/xps/

  29. Ma, Y., Gu, Z., Wu, Y., Liu, J., Zheng, L.: Lubricating mechanism of sulfurized olefin on Ni-P brush platin. Wear 181–183(1), 413–416 (1995). doi:10.1016/0043-1648(95)90049-7

    Google Scholar 

  30. Barros-Bouchet, M., Martin, J., Le-Mogne, T., Vacher, B.: Boundary lubrication mechanisms of carbon coatings by MoDTC and ZDDP additives. Tribol. Int. 38, 257–264 (2005). doi:10.1016/j.triboint.2004.08.009

    Article  Google Scholar 

  31. Martin, J., Donnet, C., Le-Mogne, T., Epicier, T.: Superlubricity of molybdenum disulphide. Phys. Rev. B 48, 10583–10586 (1993). doi:10.1103/PhysRevB.48.10583

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support of this work by China National 973 Program (2007CB607601) and Hundreds Talent Program of Chinese Academy of Sciences for financial support of this research work. The authors also thank Jiazheng Zhao and Bo Wang for their help with the SEM and XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanqiu Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, Y., Wang, L., Liu, X. et al. Tribological Properties of Phosphor Bronze and Nanocrystalline Nickel Coatings Under PAO + MoDTC and Ionic Liquid Lubricated Condition. Tribol Lett 31, 149–158 (2008). https://doi.org/10.1007/s11249-008-9347-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-008-9347-9

Keywords

Navigation