Skip to main content

Advertisement

Log in

Boundary Lubrication by Pure Crystalline Zinc Orthophosphate Powder in Oil

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The aim of this study is to assess the tribological behavior of pure crystalline zinc orthophosphate under boundary lubrication in order to model zinc phosphate-based anti-wear additives. Boundary films were generated from α-Zn3(PO4)2 powder dispersed in poly-alpha-olefin oil, at ambient temperature, by means of a steel sphere-on-flat contact in reciprocating motion. Electrical contact resistance and friction coefficient evolutions enable an understanding of the tribological behavior of crystalline zinc orthophosphate at the sliding interface. A conductive atomic force microscope (C-AFM) equipped with a current sensing setup, Raman spectroscopy, and nano-indentation were used to characterize the resulting film. When involved in a tribological contact, zinc orthophosphate powder forms a continuous patchy adherent film, changing its structure to amorphous orthophosphate, on both sliding steel surfaces. Morphological and mechanical properties of the film are discussed with respect to the ZDTP tribofilm models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Spikes, H.: The history and mechanisms of ZDDP. Tribol. Lett. 17, 3 (2004)

    Google Scholar 

  2. Martin, J.M.: Antiwear mechanisms of zinc dithiophosphate: a chemical hardness approach. Tribol. Lett. 6, 1 (1999)

    Article  CAS  Google Scholar 

  3. Mosey, N.J., Woo, T.K.: An ab initio molecular dynamics and density functional theory study of the formation of phosphate chains from metathiophosphates. Inorg. Chem. 45, 7464–7479 (2006)

    Article  CAS  Google Scholar 

  4. Piras F.M., Rossi A., Spencer N.D.: Combined in situ (ATR FT-IR) and ex situ (XPS) study of the ZnDTP-iron surface interaction. Tribol. Lett. 15, 3 (2003)

    Article  Google Scholar 

  5. Fuller, M., et al.: Chemical characterization of tribochemical and thermal films generated from neutral and basic ZDDPs using X-ray absorption spectroscopy. Tribol. Int. 30, 4 (1997)

    Article  Google Scholar 

  6. Aktary, M., McDermott, M.T., Torkelson, J.: Morphological evolution of films formed from thermooxidative decomposition of ZDDP. Wear 247, 172 (2001)

    Article  CAS  Google Scholar 

  7. Minfray, C., et al.: A multi-technique approach of tribofilm characterisation. Thin Solid Films 447–448, 272–277 (2004)

    Article  CAS  Google Scholar 

  8. Nicholls, M.A., et al.: Nanometer scale chemomechanical characterization of antiwear films. Tribol. Lett. 17, 205 (2004)

    Article  CAS  Google Scholar 

  9. Heuberger, R., Rossi, A., Spencer, N.D.: XPS study of the influence of temperature on ZnDTP tribofilm composition. Tribol. Lett. 25, 185 (2007)

    Article  CAS  Google Scholar 

  10. Warren, O.L., Graham, J.F., Norton P.R.: Nanomechanical properties of films derived from zinc dialkyldithiophosphate. Tribol. Lett. 4, 189 (1998)

    Article  CAS  Google Scholar 

  11. Bec, S., et al.: Relationship between mechanical properties and structures of zinc dithiophosphate anti-wear films. Proc. R. Soc. Lond. A 455, 4181 (1999)

    Article  CAS  Google Scholar 

  12. Yagishita, K., Igarashi, J.: Long drain/fuel efficient engine oils based on the ZDTP substitute additive technology. JSAE 20030320 (2003)

  13. Tsujimoto, T., Yaguchi, A., Yagishita, K.: Operational performance of eco-friendly engine oils formulated with the sulfur free additive ZP. JSAE 20077300 (2007)

  14. Quinn, C.J., Beall, G.H., Dickinson, J.E.: Alkali zinc pyrophosphate glasses for polymer blends. Proc. XVIth Int. Congr. Glass 4, 79 (1992)

    Google Scholar 

  15. Brow, R. K.: Review: the structure of simple phosphate glasses. J. Non-Cryst. Solids 263–264, 1 (2000)

    Article  Google Scholar 

  16. Crisp, S.: Infrared spectroscopic studies on the development of crystallinity in dental zinc phosphate cements. J. Dent. Res. 57, 245 (1978)

    CAS  Google Scholar 

  17. Narayanan, S.: Surface pretreatment by phosphate conversion coatings—a review. Rev. Adv. Mater. Sci. 9, 130 (2005)

    CAS  Google Scholar 

  18. Martin, J.M., Ohmae, N.: Nanolubricants. Tribology in Practice Series. Wiley (2008)

  19. Belin M.: Triboscopy: a new quantitative tool for microtribology. Wear 168, 7 (1993)

    Article  CAS  Google Scholar 

  20. Tonck, A., Martin, J.M., Kapsa, Ph., Georges, J.M.: Mechanical behavior of tribochemical films under a cyclic tangential load in a ball-flat contact. Tribol. Int. 12, 209 (1979)

    Article  CAS  Google Scholar 

  21. Houzé, F., Meyer, R., Schneegans, O., Boyer, L.: Imaging the local electrical properties of metal surfaces by atomic force microscopy with conducting probes. Appl. Phys. Lett. 69, 13 (1996)

    Article  Google Scholar 

  22. Weng, D., Jokiel, P., Uebleis, A., Boehni, H.: Corrosion and protection characteristics of zinc and manganese phosphate coatings. Surf. Coat. Technol. 88, 147–156 (1996)

    Article  Google Scholar 

  23. Frost, R.L.: An infrared and Raman spectroscopic study of natural zinc phosphates. Spectrochim. Acta Part A 60, 1439 (2004)

    Article  CAS  Google Scholar 

  24. Gauvin, M., et al.: Zinc phosphate chain length study under high hydrostatic pressure by Raman spectroscopy. J. Appl. Phys. 101, 63505-1 (2007)

    Article  CAS  Google Scholar 

  25. Belin, M., Martin, J.M.: Triboscopy, a new approach to surface degradations of thin films. Wear 156, 151 (1992)

    Article  CAS  Google Scholar 

  26. Gadenne, M., et al.: First AFM observation of thin cermet films close to the percolation threshold using a conducting tip. Physica B 279, 94 (2000)

    Article  CAS  Google Scholar 

  27. Demmou, K., Bec, S., Loubet, J.L., Martin, J.M.: Temperature effects on mechanical properties of zinc dithiophosphate tribofilms. Tribol. Int. 39, 12 (2006)

    Article  CAS  Google Scholar 

  28. Pethica, J.B., Oliver, W.C.: echanical properties of nanometer volumes of material: use of the elastic response of small area indentations. Mater. Res. Soc. Symp. Proc. 130, 13 (1989)

    CAS  Google Scholar 

  29. Hochstetter, G., et al.: Strain rate effects on hardness of glassy polymers in the nanoscale range. Comparison between quasi-static and continuous stiffness measurements. J. Macromol. Sci. Phys. B38(5–6), 681 (1999)

    CAS  Google Scholar 

  30. Joly-Pottuz, L., et al.: Diamond-derived carbon onions as lubricant additives. Tribol. Int. 41, 2 (2008)

    Google Scholar 

  31. Tischendorf, B., et al.: A study of short and intermediate range order in zinc phosphate glasses. J. Non-Cryst. Solids 282, 147 (2001)

    Article  CAS  Google Scholar 

  32. Tschoegl, N.W. et al.: The effect of temperature and pressure on the mechanical properties of thermo- and/or piezorheologically simple polymeric materials in thermodynamic equilibrium a critical review. Mech. Time-Dependent Mater. 6, 5399 (2002)

    Google Scholar 

  33. Roche, S., et al.: Analysis of the elastic modulus of a thin polymer film. Mater. Res. Soc. Symp. Proc. 778, 11722 (2003)

    Google Scholar 

  34. Georges, J.M., et al.: Mechanism of boundary lubrication with zinc dithiophosphate. Wear 53, 9–34 (1979)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Comments from an anonymous reviewer improved the clarity of presentation and are appreciated. The authors thank K. Demmou for performing nanoindentation experiments on the sample. This work was supported by the Région Rhone-Alpes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gauvin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gauvin, M., Dassenoy, F., Belin, M. et al. Boundary Lubrication by Pure Crystalline Zinc Orthophosphate Powder in Oil. Tribol Lett 31, 139–148 (2008). https://doi.org/10.1007/s11249-008-9346-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-008-9346-x

Keywords

Navigation