Skip to main content
Log in

Macroscopic Friction Coefficient Measurements on Living Endothelial Cells

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Arterial stent deployment by balloon or self-expandable structure introduces shear forces and radial forces that can damage or remove the endothelial cell layer. These factors can subsequently cause failure by restenosis or endothelial leaks. These conditions can be exacerbated by pulsatile blood flow and arterial asymmetry, which can cause migration or displacement. In mechanical or finite-element models which attempt to explain this motion, friction between the stent materials and endothelial cells is eclipsed by pressure, or assumptions that cells are moved along with the stent. During device deployment or migration, some relative motion between stent materials and endothelial cells occurs. This study aims to quantify friction between a polished glass pin and a single layer of arterial endothelial cells, and include observations of cell damage in an attempt to better understand the biological response to tribological stresses. Measured friction coefficient values were on the order of μ = 0.03–0.06.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ho, S.P., Nakabayashi, N., Iwasaki, Y., Boland, T., Laberge, M.: Frictional properties of Poly(Mpc-Co-Bma) phospholipid polymer for catheter applications. Biomaterials 24(28), 5121–5129 (2003)

    Article  CAS  Google Scholar 

  2. Lim, I.: Biocompatibility of stent materials. MIT Undergrad. Res. J. 11(Fall 2004), 33–37 (2004)

    Google Scholar 

  3. Costa, K.D., Sim, A.J., Yin, F.C.P.: Non-hertzian approach to analyzing mechanical properties of endothelial cells probed by atomic force microscopy. J. Biomech. Eng. Trans. Asme 128(2), 176–184 (2006)

    Article  Google Scholar 

  4. Volodos, S.M., Sayers, R.D., Gostelow, J.P., Bell, P.R.F.: An investigation into the cause of distal endoleaks: role of displacement force on the distal end of a stent-graft. J. Endovas. Ther 12(1), 115–120 (2005)

    Article  Google Scholar 

  5. Liffman, K., Sutalo, I.D., Lawrence-Brown, M.M.D., Semmens, J.B., Aldham, B.: Movement and dislocation of modular stent-grafts due to pulsatile flow and the pressure difference between the stent-graft and the aneurysm sac. J. Endovas. Ther 13(1), 51–61 (2006)

    Article  Google Scholar 

  6. Resch, T., Malina, M., Lindblad, B., Malina, J., Brunkwall, J., Ivancev, K.: The impact of stent design on proximal stentgGraft fixation in the abdominal aorta: an experimental study. Eur. J. Vasc. Endovasc. Surg. 20(2), 190–195 (2000)

    Article  CAS  Google Scholar 

  7. Jedwab, M.R., Clerc, C.O.: A study of the geometrical and mechanical-properties of a self-expanding metallic stent theory and experiment. J. Appl. Biomat. 4(1), 77–85 (1993)

    Article  CAS  Google Scholar 

  8. Morris, L., Delassus, P., Walsh, M., Mcgloughlin, T.: A mathematical model to predict the in vivo pulsatile drag forces acting on bifurcated stent grafts used in endovascular treatment of abdominal aortic aneurysms (Aaa). J. Biomech 37(7), 1087–1095 (2004)

    Article  CAS  Google Scholar 

  9. Li, Z., Kleinstreuer, C.: Analysis of biomechanical factors affecting stent-graft migration in an abdominal aortic aneurysm model. J. Biomech 39(12), 2264–2273 (2006)

    Article  CAS  Google Scholar 

  10. Li, Z., Kleinstreuer, C., Farber, M.: Computational analysis of biomechanical contributors to endovascular graft failure. Biomech. Model Mechanobiol. 4(4), 221–234 (2005)

    Article  CAS  Google Scholar 

  11. Walke, W., Paszenda, Z., Filipiak, J.: Experimental and numerical biomechanical analysis of vascular stent. J. Mater. Process. Technol. 164, 1263–1268 (2005)

    Article  Google Scholar 

  12. Wang, R., Ravi-Chandar, K.: Mechanical response of a metallic aortic stent - Part I: Pressure-diameter relationship. J. Appl. Mech. Trans. Asme 71(5), 697–705 (2004)

    Article  Google Scholar 

  13. Wang, R., Ravi-Chandar, K.: Mechanical response of a metallic aortic stent - Part Ii: A beam-on-elastic foundation model. J. Appl. Mech. Trans. Asme 71(5), 706–712 (2004)

    Article  Google Scholar 

  14. Laroche, D., Delorme, S., Anderson, T., Diraddo, R.: Computer prediction of friction in balloon angioplasty and stent implantation. Biomed. Simul., Proc. 4072, 1–8 (2006)

    Article  Google Scholar 

  15. Holzapfel, G., Stadler, M., Gasser, T.C.: Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent designs. J. Biomech. Eng. Trans. Asme 127(1), 166–180 (2005)

    Article  Google Scholar 

  16. Fisher, A.B., Chien, S., Barakat, A.I., Nerem, R.M.: Endothelial cellular response to altered shear stress. Am. J. Physiol. Lung Cell. Mol. Physiol. 281(3), L529–L533 (2001)

    CAS  Google Scholar 

  17. Sato, H., Katano, M., Takigawa, T., Masuda, T.: Estimation for the elasticity of vascular endothelial cells on the basis of atomic force microscopy and Young’s modulus of gelatin gels. Polym. Bull. 47(3–4), 375–381 (2001)

    Article  CAS  Google Scholar 

  18. Sato, M., Nagayama, K., Kataoka, N., Sasaki, M., Hane, K.: Local mechanical properties measured by atomic force microscopy for cultured bovine endothelial cells exposed to shear stress. J. Biomech. 33(1), 127–135 (2000)

    Article  CAS  Google Scholar 

  19. Yeh, H.I., Lu, S.K., Tian, T.Y., Hong, R.C., Lee, W.H., Tsai, C.H.: Comparison of endothelial cells grown on different stent materials. J. Biomed. Mater. Res. A 76A(4), 835–841 (2006)

    Article  CAS  Google Scholar 

  20. Rennie, A.C., Dickrell, P.L., Sawyer, W.G.: Friction coefficient of soft contact lenses: measurements and modeling. Tribol. Lett. 18(4), 499–504 (2005)

    Article  CAS  Google Scholar 

  21. Keselowsky, B.G., Collard, D.M., Garcia, A.J.: Surface chemistry modulates focal adhesion composition and signaling through changes in integrin binding. Biomaterials 25(28), 5947–5954 (2004)

    Article  CAS  Google Scholar 

  22. Keselowsky, B.G., Garcia, A.J.: Quantitative methods for analysis of integrin binding and focal adhesion formation on biomaterial surfaces. Biomaterials 26(4), 413–418 (2005)

    Article  CAS  Google Scholar 

  23. Keselowsky, B.G., Wang, L., Schwartz, Z., Garcia, A.J., Boyan, B.D.: Integrin alpha(5) controls osteoblastic proliferation and differentiation responses to titanium substrates presenting different roughness characteristics in a roughness independent manner. J. Biomed. Mater. Res. A 80A(3), 700–710 (2007)

    Article  CAS  Google Scholar 

  24. Butcher, J.T., Tressel, S., Johnson, T., Turner, D., Sorescu, G., Jo, H., Nerem, R.M.: Transcriptional profiles of valvular and vascular endothelial cells reveal phenotypic differences - influence of shear stress. Arterioscler. Thromb. Vasc. Biol. 26(1), 69–77 (2006)

    Article  CAS  Google Scholar 

  25. Galbraith, C.G., Skalak, R., Chien, S.: Shear stress induces spatial reorganization of the endothelial cell cytoskeleton. Cell Motil. Cytoskeleton 40(4), 317–330 (1998)

    Article  CAS  Google Scholar 

  26. Mohan, I.V., Harris, P.L., Van Marrewijk, C.J., Laheij, R.J., How, T.V.: Factors and forces influencing stent-graft migration after endovascular aortic aneurysm repair. J. Endovasc. Ther. 9, 748–755 (2002)

    Article  Google Scholar 

  27. Ratner B.D., Bryant S.J.: Biomaterials: where we have been and where we are going. Annu. Rev. Biomed. Eng. 6, 41–75 (2004)

    Article  CAS  Google Scholar 

  28. Brash J.L.: Protein adsorption at the solid-solution interface in relation to blood-material interactions. In: Horbett T.A., Brash J.L. (eds) Proteins at Interfaces, pp. 490–506. American Chemical Society, Washington, DC (1987)

    Google Scholar 

  29. Andrade, J.D., Hlady, V.V.: Protein adsorption and materials biocompatibility: a tutorial review and suggested hypotheses. Adv. Polym. Sci. 79, 1–63 (1986)

    CAS  Google Scholar 

  30. Keselowsky, B.G., Collard, D.M., Garcia, A.J.: Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proc. Natl. Acad. Sci. U.S.A 102(17), 5953–5957 (2005)

    Article  CAS  Google Scholar 

  31. Keselowsky, B.G., Collard, D.M., Garcia, A.J.: Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. J. Biomed. Mater. Res. A 66A(2), 247–259 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge very helpful conversations regarding testing procedures and cell culturing with Prof. Roger Tran-Son-Tay, Prof. Malisa Sarntinoranont, and Jessica Cobb at the University of Florida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Gregory Sawyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunn, A.C., Zaveri, T.D., Keselowsky, B.G. et al. Macroscopic Friction Coefficient Measurements on Living Endothelial Cells. Tribol Lett 27, 233–238 (2007). https://doi.org/10.1007/s11249-007-9230-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-007-9230-0

Keywords

Navigation