Skip to main content
Log in

The presence of Bt-transgenic oilseed rape in wild mustard populations affects plant growth

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The adventitious presence of transgenic plants in wild plant populations is of ecological and regulatory concern, but the consequences of adventitious presence are not well understood. Here, we introduced Bacillus thuringiensis Cry1Ac (Bt)-transgenic oilseed rape (Bt OSR, Brassica napus) with various frequencies into wild mustard (Brassica juncea) populations. We sought to better understand the adventitious presence of this transgenic insecticidal crop in a wild-relative plant population. We assessed the factors of competition, resource availability and diamondback moth (Plutella xylostella) infestation on plant population dynamics. As expected, Bt OSR performed better than wild mustard in mixed populations under herbivore attack in habitats with enough resources, whereas wild mustard had higher fitness when Bt OSR was rarer in habitats with limited resources. Results suggest that the presence of insect-resistant transgenic plants could decrease the growth of wild mustard and Bt OSR plants and their populations, especially under high herbivore pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agrawal AA (1998) Induced responses to herbivory and increased plant performance. Science 279:1201–1202

    Article  CAS  PubMed  Google Scholar 

  • Aono M, Wakiyama S, Nagatsu M, Nakajima N, Tamaoki M, Kubo A, Saji H (2006) Detection of feral transgenic oilseed rape with multiple-herbicide resistance in Japan. Environ Biosaf Res 5:77–87

    Article  CAS  Google Scholar 

  • Carrière Y, Crowder DW, Tabashnik BE (2010) Evolutionary ecology of insect adaptation to Bt crops. Evol Appl 3:561–573

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen C-X, Wu E, Yang Y-Z, Su H-H (2014) The transfer of Bt insecticidal protein to higher tropic levels via a transgenic cotton, then beet armyworm (Lepidoptera: Noctuidae) and their natural enemies. Can Entomol 146:1–7

    Article  Google Scholar 

  • Crawley MJ, Brown SL (1995) Seed limitation and the dynamics of feral oilseed rape on the M25 motorway. Proc R Soc Lond B Biol Sci 259:49–54

    Article  Google Scholar 

  • Crawley MJ, Brown SL (2004) Spatially structured population dynamics in feral oilseed rape. Proc R Soc Lond B Biol Sci 271:1909–1916

    Article  Google Scholar 

  • Damgaard C, Kjaer C (2009) Competitive interactions and the effect of herbivory on Bt-Brassica napus, Brassica rapa and Lolium perenne. J Appl Ecol 46:1073–1079

    Article  Google Scholar 

  • Darmency H (1994) The impact of hybrids between genetically modified crop plants and their related species: introgression and weediness. Mol Ecol 3:37–40

    Article  Google Scholar 

  • Devos Y, Hails RS, Messean A, Perry JN, Squire GR (2012) Feral genetically modified herbicide tolerant oilseed rape from seed import spills: are concerns scientifically justified? Transgenic Res 21:1–21

    Article  CAS  PubMed  Google Scholar 

  • D’Hertefeldt T, Jorgensen RB, Pettersson LB (2008) Long-term persistence of GM oilseed rape in the seedbank. Biol Lett 4:314–317

    Article  PubMed Central  PubMed  Google Scholar 

  • Ellstrand N et al (2013) Introgression of crop alleles into wild or weedy populations. Annu Rev Ecol Evol Syst 44:325–345

    Article  Google Scholar 

  • Halfhill MD, Richards HA, Mabon SA, Stewart CN Jr (2001) Expression of GFP and Bt transgenes in Brassica napus and hybridization with Brassica rapa. Theor Appl Genet 103:659–667

    Article  CAS  Google Scholar 

  • Halfhill MD et al (2005) Growth, productivity, and competitiveness of introgressed weedy Brassica rapa hybrids selected for the presence of Bt cry1Ac and gfp transgenes. Mol Ecol 14:3177–3189

    Article  CAS  PubMed  Google Scholar 

  • Hall L, Topinka K, Huffman J, Davis L, Good A (2000) Pollen flow between herbicide resistant Brassica napus is the cause of multiple-resistant B. napus volunteers. Weed Sci 48:688–694

    Article  CAS  Google Scholar 

  • Hooftman DAP, Jong MJD, Oostermeijer JGB, Den Nijs HCM (2007) Modelling the long-term consequences of crop-wild relative hybridization: a case study using four generations of hybrids. J Appl Ecol 44:1035–1045

    Article  Google Scholar 

  • James C (2012) Global status of commercialized biotech/GM crops: 2012. In: ISAAA brief no: 44, Ithaca, NY

  • Kwit C, Moon HS, Warwick SI, Stewart CN Jr (2011) Transgene introgression in crop relatives: molecular evidence and mitigation strategies. Trends Biotechnol 29:284–293

    Article  CAS  PubMed  Google Scholar 

  • Lei L, Stewart CN Jr, Tang Z, Wei W (2011) Dynamic expression of green fluorescent protein and Bacillus thuringiensis Cry1Ac endotaxin in interspecific hybrids and successive backcross generations (BC1 and BC2) between transgenic Brassica napus crop and wild Brassica juncea. Ann Appl Biol 159:212–219

    Article  CAS  Google Scholar 

  • Liu Y, Wei W, Ma K, Darmency H (2013a) Spread of introgressed insect-resistance genes in wild populations of Brassica juncea: a simulated in vivo approach. Transgenic Res 22:747–756

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wei W, Ma K, Li JS, Liang Y, Darmency H (2013b) Consequences of gene flow between oilseed rape (Brassica napus) and its relatives. Plant Sci 211:42–51

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Chen M, Collins HL, Onstad DW, Roush RT et al (2014) Natural enemies delay insect resistance to Bt crops. PLoS One 9:e90366

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu Y, Li J, Neal Stewart C, Luo Z, Xiao N (2015a) The effects of the presence of Bt-transgenic oilseed rape in wild mustard populations on the rhizosphere nematode and microbial communities. Sci Total Environ 530–531:263–270

    Article  PubMed  Google Scholar 

  • Liu YB, Darmency H, Stewart CN Jr, Wei W, Tang ZX, Ma KP (2015b) The effect of Bt-transgene introgression on plant growth and reproduction in wild Brassica juncea. Transgenic Res 24:537–547

    Article  CAS  PubMed  Google Scholar 

  • Londo JP, Bollman MA, Sagers CL, Lee EH, Watrud LS (2011) Glyphosate-drift but not herbivory alters the rate of transgene flow from single and stacked trait transgenic canola (Brassica napus) to nontransgenic B. napus and B. rapa. New Phytol 191:40–849

    Google Scholar 

  • Marquardt P, Krupke C, Johnson WG (2012) Competition of transgenic volunteer corn with soybean and the effect on western corn rootworm emergence. Weed Sci 60:193–198

    Article  CAS  Google Scholar 

  • Meier MS, Trtikova M, Suter M, Edwards AR, Hilbeck A (2013) Simulating evolutionary responses of an introgressed insect resistance trait for ecological effect assessment of transgene flow: a model for supporting informed decision making in environmental risk assessment. Ecol Evol 3:416–423

    Article  PubMed Central  PubMed  Google Scholar 

  • Moon HS, Halfhill MD, Good LL, Raymer PL, Stewart CN Jr (2007) Characterization of directly transformed weedy Brassica rapa and introgressed B. rapa with Bt cry1Ac and gfp genes. Plant Cell Rep 26:1001–1010

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran S, Buntin GD, All JN, Raymer PL, Stewart CN Jr (2000) Intraspecific competition of an insect-resistant transgenic canola in seed mixtures. Agron J 92:368–374

    Article  Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing. V. R foundation for statistical computing, Austria. http://www.r-project.org/

  • Reuter H, Menzel G, Pehlke H, Breckling B (2008) Hazard mitigation or mitigation hazard? Would genetically modified dwarfed oilseed rape (Brassica napus) increase feral survival? Environ Sci Pollut Res 15:529–535

    Article  Google Scholar 

  • Santa-Maria MC, Lajo-Morgan G, Guardia L (2014) Adventitious presence of transgenic events in the maize supply chain in Peru: a case study. Food Control 41:96–101

    Article  Google Scholar 

  • Schafer MG, Ross AA, Londo JP, Burdick CA, Lee EH et al (2011) The establishment of genetically engineered canola populations in the US. PLoS One 6:e25736

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Showalter AM, Heuberger S, Tabashnik BE, Carriere Y (2009) A primer for using of insecticidal transgenic cotton in developing countries. J Insect Sci 9:22

    Article  PubMed Central  PubMed  Google Scholar 

  • Snow AA et al (2003) A Bt transgene reduces herbivory and enhances fecundity in wild sunflowers. Ecol Appl 13:279–286

    Article  Google Scholar 

  • Stewart CN Jr, Adang MJ, All JN, Boerma HR, Cardineau C, Tucker D, Parrott WA (1996) Genetic transformation, recovery, and characterization of fertile soybean transgenic for a synthetic Bacillus fhuringiensis cry/Ac gene. Plant Physiol 112:121–129

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stewart JCN, All JN, Raymer PL, Ramachandran S (1997) Increased fitness of transgenic insecticidal rapeseed under insect selection pressure. Mol Ecol 6:773–779

    Article  Google Scholar 

  • Stewart JCN, Halfhill MD, Warwick SI (2003) Transgene introgression from genetically modified crops to their wild relatives. Nat Rev Genet 4:806–817

    Article  CAS  PubMed  Google Scholar 

  • Tabashnik BE, Brévault T, Carrière Y (2013) Insect resistance to Bt crops: lessons from the first billion acres. Nat Biotechnol 31:510–521

    Article  CAS  PubMed  Google Scholar 

  • Vacher C, Weis AE, Hermann D, Kossler T, Young C, Hochberg ME (2004) Impact of ecological factors on the initial invasion of Bt transgenes into wild populations of birdseed rape (Brassica rapa). Theor Appl Genet 109:806–814

    Article  PubMed  Google Scholar 

  • van Heerwaarden J, Ortega Del Vecchyo D, Alvarez-Buylla ER, Bellon MR (2012) New genes in traditional seed systems: diffusion, detectability and persistence of transgenes in a maize metapopulation. PLoS One 7:e46123

    Article  PubMed Central  PubMed  Google Scholar 

  • Vargas-Parada L (2014) GM maize splits Mexico. Nature 511:16–17

    Article  CAS  PubMed  Google Scholar 

  • Warwick SI, Légère A, Simard MJ, James T (2008) Do escaped transgenes persist in nature? The case of an herbicide resistance transgene in a weedy Brassica rapa population. Mol Ecol 17:1387–1395

    Article  CAS  PubMed  Google Scholar 

  • Wei W, Schuler TH, Clark SJ, Stewart CN, Poppy GM (2005) Age-related increase in levels of insecticidal protein in the progenies of transgenic oilseed rape and its efficacy against a susceptible strain of diamondback moth. Ann Appl Biol 147:227–234

    Article  CAS  Google Scholar 

  • Weis AE, Hochberg ME (2000) The diverse effects of intraspecific competition on the selective advantage to resistance: a model and its predictions. Am Nat 156:276–292

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of China (Grant 31200288), the National Environmental Protection Public Welfare Science and Technology Research Program of China (Grant 201309038) and one Project of the State Key Laboratory of Environmental Criteria and Risk Assessment, CRAES. The work was enabled by an earlier USDA Biotechnology Risk Assessment grant to CNS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongbo Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 155 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Stewart, C.N., Li, J. et al. The presence of Bt-transgenic oilseed rape in wild mustard populations affects plant growth. Transgenic Res 24, 1043–1053 (2015). https://doi.org/10.1007/s11248-015-9903-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-015-9903-7

Keywords

Navigation