Skip to main content
Log in

Genetic transformation of the codling moth, Cydia pomonella L., with piggyBac EGFP

  • Technical Report
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Genetic transformation of the codling moth, Cydia pomonella, was accomplished through embryo microinjection with a plasmid-based piggyBac vector containing the enhanced green fluorescent protein (EGFP) gene. Sequencing of the flanking regions around the inserted construct resulted in identification of insect genomic sequences, not plasmid sequences, thus providing evidence that the piggyBac EGFP cassette had integrated into the codling moth genome. EGFP-positive moths were confirmed in the 28th and earlier generations post injection through PCR and Southern blot analyses, indicating heritability of the transgene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Allen ML, Handler AM, Berkebile DR, Skoda SR (2004) piggyBac transformation of the New World screwworm, Cochliomyia hominivorax, produces multiple distinct mutant strains. Med Vet Entomol 18:1–9

    Article  CAS  PubMed  Google Scholar 

  • Anderson DT, Wood EC (1968) The morphological basis of embryonic movements in the light brown apple moth, Epiphyas postvittana (Walk.) (Lepidoptera: Tortricidae). Austral J Zool 16:763–793

    Article  Google Scholar 

  • Atkinson PW, O’Brochta DA (2000) Hermes and other hAT elements as gene vectors in insects. In: Handler A, James A (eds) Insect transgenesis: methods and applications. CRC Press, Boca Raton, pp 219–235

    Chapter  Google Scholar 

  • Beers EH, Brunner JF, Willett MJ, Warner GM (eds) (1993) Orchard pest management: a resource book for the Pacific Northwest. Good Fruit Grower, Washington State Fruit Commission, Yakima, Washington

  • Bellen HJ, O’Kane CJ, Wilson C, Grossniklaus U, Pearson RK, Gehring WJ (1989) P-element-mediated enhancer detection: a versatile method to study development in Drosophila. Development 3:1288–1300

    CAS  Google Scholar 

  • Berghammer A, Klingler M, Wimmer EA (1999) A universal marker for transgenic insects. Nature 402:370–371

    Article  CAS  PubMed  Google Scholar 

  • Cary LC, Goebel M, Corsaro HH, Wang HH, Rosen E, Fraser MJ (1989) Transposon mutagenesis of baculoviruses: analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology 161:8–17

    Google Scholar 

  • Catterucia F, Crisanti A, Winner EA (2009) Transgenic technologies to induce sterility. Malar J 8(Suppl 2):S7

    Article  Google Scholar 

  • Daborn PJ, Lum C, Boey A, Wong W, ffrench-Constant RH, Batterham P (2007) Evaluating the insecticide resistance potential of eight Drosophila melanogaster cytochrome P450 genes by transgenic overexpression. Insect Biochem Mol Biol 37:512–519

    Article  CAS  PubMed  Google Scholar 

  • DeVault JD, Hughes KJ, Leopold RA, Johnson OA, Narang SK (1996) Gene transfer into corn earworm (Helicoverpa zea) embryos. Genome Res 6:571–579

    Article  CAS  PubMed  Google Scholar 

  • Elick TA, Bauser CA, Fraser MJ (1996a) Excision of the piggyBac transposable element in vitro is a precise event that is enhanced by the expression of its encoded transposase. Genetica 98:33–41

    Article  CAS  PubMed  Google Scholar 

  • Elick TA, Bauser CA, Principe NM, Fraser MJ (1996b) PCR analysis of insertion site specificity, transcription and structural uniformity of the Lepidopteran transposable element IFP2 in the TN-368 cell genome. Genetica 97:127–139

    Article  CAS  PubMed  Google Scholar 

  • Fraser MJ (2000) The TTAA-specific family of transposable elements: identification, functional characterization, and utility for transformation of insects. In: Handler A, James A (eds) Insect transgenesis: methods and applications. CRC Press, Boca Raton, FL, pp 249–268

    Chapter  Google Scholar 

  • Fraser MJ, Ciszczon T, Elick T, Bauser C (1996) Precise excision of TTAA-specific Lepidopteran transposons TFP3 and IFP2 from the baculovirus genome in cell lines from two species of Lepidoptera. Insect Mol Biol 5:141–151

    Article  CAS  PubMed  Google Scholar 

  • Fryxell KJ, Miller TA (1995) Autocidal biological control: a general strategy for insect control based on genetic transformation with a highly conserved gene. J Econ Entomol 88:1221–1232

    Google Scholar 

  • Fuková I, Neven LG, Bárcenas NM, Gund NA, Dalíková M, Marec F (2009) Rapid assessment of codling moth sex from eggs to larvae. J Applied Entomol 133:249–261

    Article  Google Scholar 

  • Garza D, Medhora M, Koga A, Hartl DL (1991) Introduction of the transposable element mariner into the germline of Drosophila melanogaster. Genetics 128:303–310

    CAS  PubMed  Google Scholar 

  • Gong P, Epton MJ, Fu G, Scaife S, Hiscox A, Condon KC, Condon GC, Morrison NI, Kelly DW, Dafa’alla T, Coleman PG, Alphey L (2005) A dominant lethal genetic system for autocidal control of the Mediterranean fruit fly. Nature Biotechnol 23:453–456

    Article  CAS  Google Scholar 

  • Handler AM (2001) A current perspective on insect gene transformation. Insect Biochem Mol Biol 31:111–128

    Article  CAS  PubMed  Google Scholar 

  • Handler AM (2002) Use of the piggyBac transposon for germline transformation of insects. Insect Biochem Mol Biol 32:1211–1220

    Article  CAS  PubMed  Google Scholar 

  • Handler AM (2004) Understanding and improving transgene stability and expression in insects for SIT and conditional lethal release programs. Insect Biochem Mol Biol 34:121–130

    Article  CAS  PubMed  Google Scholar 

  • Handler AM, Harrell RA II (1999) Germline transformation of Drosophila melanogaster with the piggyBac transposon vector. Insect Mol Biol 8:449–457

    Article  CAS  PubMed  Google Scholar 

  • Handler AM, Harrell RA II (2001a) Transformation of the Caribbean fruit fly with a piggyBac transposon vector marked with polyubiquitin-regulated GFP. Insect Biochem Mol Biol 31:199–205

    Article  CAS  PubMed  Google Scholar 

  • Handler AM, Harrell RA (2001b) Polyubiquitin-regulated DsRed marker for transgenic insects. Biotechniques 31:820–828

    CAS  PubMed  Google Scholar 

  • Handler AM, James AA (2000) Insect transgenesis: methods and applications. CRC Press, Boca Raton

    Book  Google Scholar 

  • Handler AM, McCombs SD (2000) The piggyBac transposon mediates germ-line transformation in the Oriental fruit fly and closely related elements exist in its genome. Insect Mol Biol 9:605–612

    Article  CAS  PubMed  Google Scholar 

  • Handler AM, McCombs SD, Fraser MJ, Saul SH (1998) The lepidopteran transposon vector, piggyBac, mediates germ-line transformation in the Mediterranean fruit fly. Proc Natl Acad Sci USA 95:7520–7525

    Article  CAS  PubMed  Google Scholar 

  • Heinrich JC, Scott MJ (2000) A repressible female-specific lethal genetic system for making transgenic insect strains suitable for a sterile-release program. Proc Natl Acad Sci USA 97:8229–8232

    Article  CAS  PubMed  Google Scholar 

  • Horn C, Wimmer EA (2000) A versatile vector set for animal transgenesis. Devel Genes Evol 210:630–637

    Article  CAS  Google Scholar 

  • Horn C, Wimmer EA (2003) A transgene-based, embryo-specific lethality system for insect pest management. Nature Biotechnol 21:64–70

    Article  CAS  Google Scholar 

  • Horn C, Jaunich B, Wimmer EA (2000) Highly sensitive, fluorescent transformation marker for Drosophila transgenesis. Devel Genes Evol 210:623–629

    Article  CAS  Google Scholar 

  • Horn C, Schmid BGM, Pogoda FS, Wimmer EA (2002) Fluorescent transformation markers for insect transgenesis. Insect Biochem Mol Biol 32:1221–1235

    Article  CAS  PubMed  Google Scholar 

  • Horn C, Offen N, Nystedt S, Hacker U, Wimmer EA (2003) piggyBac-based insertional mutagenesis and enhancer detection as a tool for functional insect genomics. Genetics 163:647–661

    CAS  PubMed  Google Scholar 

  • Jehle JA, Nickel A, Vlak JM, Backhaus H (1998) Horizontal escape of the novel Tc1-like lepidopteran transposon TCp3.2 into Cydia pomonella granulovirus. J Mol Evol 46:215–234

    Article  CAS  PubMed  Google Scholar 

  • Jones WE, Tangren J, Koehn A, Beers E, Brunner JF (2002) IPM in Washington State orchards: a survey of management practices for the 2000 season. Final Report. December 10, 2002. WSU-Wenatchee Tree Fruit Research & Extension Center

  • Kurtti TJ, Mattila JT, Herron MJ, Felsheim RF, Baldridge GD, Burkhardt NY, Blazar BR, Hackett PB, Meyer JM, Munderloh UG (2008) Transgene expression and silencing in a tick cell line: a model system for functional tick genomics. Insect Biochem Mol Biol 38:963–968

    Article  CAS  PubMed  Google Scholar 

  • Kuwayama H, Yaginuma T, Yamashita O, Niimi T (2006) Germ-line transformation and RNAi of the ladybird beetle, Harmonia axyridis. Insect Mol Biol 15:507–512

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Simon JA, Lis JT (1988) Structure and expression of ubiquitin genes of Drosophila melanogaster. Mol Cell Biol 8:4727–4735

    CAS  PubMed  Google Scholar 

  • Li X, Harrell RA, Handler AM, Beam T, Hennessy K, Fraser MJ Jr (2005) piggybac internal sequences are necessary for efficient transformation of target genomes. Insect Mol Biol 14:17–30

    Article  PubMed  Google Scholar 

  • Lobo N, Li X, Fraser MJ (1999) Transposition of the piggyBac element in embryos of Drosophila melanogaster, Aedes aegypti and Trichoplusia ni. Mol Gen Genet 261:803–810

    Article  CAS  PubMed  Google Scholar 

  • Lobo NF, Hua-Van A, Li X, Nolen BM, Fraser MJ (2002) Germ line transformation of the yellow fever mosquito, Aedes aegypti, mediated by transpositional insertion of a piggyBac vector. Insect Mol Biol 11:133–139

    Article  CAS  PubMed  Google Scholar 

  • Loukeris TG, Arca B, Livadras L, Dialektaki G, Savakis C (1995a) Introduction of the transposable element Minos into the germ line of Drosophila melanogaster. Proc Natl Acad Sci USA 92:9485–9489

    Article  CAS  PubMed  Google Scholar 

  • Loukeris TG, Livadras I, Arca B, Zabalou S, Savakis C (1995b) Gene transfer into the Medfly, Ceratitis capitata, using a Drosophila hydei transposable element. Science 270:2002–2005

    Article  CAS  PubMed  Google Scholar 

  • Marcus JM, Ramos DM, Monteiro A (2004) Germline transformation of the butterfly Bicyclus anynana. Proc Biol Sci 271(Suppl 5):S263–S265

    Article  PubMed  Google Scholar 

  • Marec F, Neven LG, Robinson AS, Vreysen M, Goldsmith MR, Nagaraju J, Franz G (2005) Development of genetic sexing strains in Lepidoptera: from traditional to transgenic approaches. J Econ Entomol 98:248–259

    Article  PubMed  Google Scholar 

  • Marrelli MT, Li C, Rasgon JL, Jacobs-Lorena M (2007) Transgenic malaria-resistant mosquitoes have a fitness advantage when feeding on Plasmodium-infected blood. Proc Natl Acad Sci USA 104:5580–5583

    Article  CAS  PubMed  Google Scholar 

  • Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, Markelov ML, Lukyanov SA (1999) Fluorescent proteins from nonbioluminnescent Anthozoa species. Nature Biotechnol 17:969–973

    Article  CAS  Google Scholar 

  • Michel K, Stamenova A, Pinkerton AC, Franz G, Robinson AS, Gariou-Papalexiou A, Zacharaopoulou A, O’Brochta DA, Atkinson PW (2001) Hermes-mediated germ-line transformation of the Mediterranean fruit fly Ceratitis capitata. Insect Mol Biol 10:155–162

    Article  CAS  PubMed  Google Scholar 

  • Mohammed A, Coates CJ (2004) Promoter and piggyBac activities within embryos of the potato tuber moth, Phthorimaea operculella, Zeller (Lepidoptera: Gelechiidae). Gene 342:293–301

    Article  CAS  PubMed  Google Scholar 

  • O’Brochta DA, Atkinson PW, Lehane MJ (2000) Transformation of Stomoxys calcitrans with a Hermes gene vector. Insect Mol Biol 9:531–538

    Article  PubMed  Google Scholar 

  • O’Brochta DA, Sethuraman N, Wilson R, Hice RH, Pinkerton AC, Levesque CS, Bideshi DK, Jasinskiene N, Coates CJ, James AA, Lehane MJ, Atkinson PW (2003) Gene vector and transposable element behavior in mosquitoes. J Exper Biol 206:3823–3834

    Article  Google Scholar 

  • Ochman H, Gerber AS, Hartl DL (1988) Genetic applications of an inverse polymerase chain reaction. Genetics 120:621–623

    CAS  PubMed  Google Scholar 

  • Park Y, Filippov V, Gill SS, Adams ME (2002) Deletion of the ecdysis-triggering hormone gene leads to lethal ecdysis deficiency. Development 129:493–503

    CAS  PubMed  Google Scholar 

  • Peloquin JJ, Thibault ST, Staten B, Miller TA (2000) Germ-line transformation of pink bollworm (Lepidoptera: Gelechiidae) mediated by the piggyBac transposable element. Insect Mol Biol 9:323–333

    Article  CAS  PubMed  Google Scholar 

  • Ponappa T, Brzozowski AE, Finer JJ (1999) Transient expression and stable transformation of soybean using the jellyfish green fluorescent protein. Plant Cell Rep 19:6–12

    Article  CAS  Google Scholar 

  • Presnail JK, Hoy MA (1992) Stable genetic transformation of a beneficial arthropod, Metaseiulus occidentalis (Acari: Phytoseiidae), by a microinjection technique. Proc Natl Acad Sci USA 89:7732–7736

    Article  CAS  PubMed  Google Scholar 

  • Raphael KA, Whyard S, Shearman D, An X, Frommer M (2004) Bactrocera tryoni and closely related pest tephritids: molecular analysis and prospects for transgenic control strategies. Insect Biochem Mol Biol 34:167–176

    Article  CAS  PubMed  Google Scholar 

  • Ren X, Han Z, Miller T (2006) Excision and transposition of piggyBac transposable element in tobacco budworm embryos. Arch Insect Biochem Physiol 63:49–56

    Article  CAS  PubMed  Google Scholar 

  • Richardson JC, Jorgensen CD, Croft BA (1982) Embryogenesis of the codling moth, Laspeyresia pomonella: use in validating phenology models. Ann Entomol Soc Am 75:201–209

    Google Scholar 

  • Robinson KO, Ferguson HJ, Cobey S, Vaessin H, Smith BH (2000) Sperm-mediated transformation of the honey bee, Apis mellifera. Insect Mol Biol 9:625–634

    Article  CAS  PubMed  Google Scholar 

  • Robinson AS, Franz G, Atkinson PW (2004) Insect transgenesis and its potential role in agriculture and human health. Insect Biochem Mol Biol 34:113–120

    Article  CAS  PubMed  Google Scholar 

  • Ruberson JR, Larsen JR, Jorgensen CD (1987) Embryogenesis of the codling moth, Cydia pomonella (Lepidoptera: Tortricidae). Ann Entomol Soc Am 80:561–570

    Google Scholar 

  • Rubin GM, Spradling AC (1982) Genetic transformation of Drosophila with transposable element vectors. Science 218:348–353

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Steller H, Pirotta V (1984) Regulated expression of genes injected into early Drosophila embryos. EMBO J 3:165–173

    CAS  PubMed  Google Scholar 

  • Tamura T, Thibert C, Royer C, Kanda T, Abraham E, Kamba M, Komoto N, Thomas JL, Mauchamp B, Chavancy G, Shirk P, Fraser M, Prudhomme JC, Couble P (2000) Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nature Biotechnol 18:81–84

    Article  CAS  Google Scholar 

  • Thibault ST, Luu HT, Vann N, Miller TA (1999) Precise excision and transposition of piggyBac in pink bollworm embryos. Insect Mol Biol 8:119–123

    Article  CAS  PubMed  Google Scholar 

  • Thomas DD, Donnelly CA, Wood RJ, Alphey LS (2000) Insect population control using a dominant, repressible, lethal genetic system. Science 287:2474–2476

    Article  CAS  PubMed  Google Scholar 

  • Toba HH, Howell JF (1991) An improved system for mass-rearing codling moths. J Entomol Soc BC 88:22–27

    Google Scholar 

  • Welshons WJ, Von Halle ES (1962) Pseudoallelism at the Notch locus in Drosophila. Genetics 47:743–759

    CAS  PubMed  Google Scholar 

  • Wilson C, Pearson RK, Bellen HJ, O’Kane CJ, Grossniklaus U, Gehring WJ (1989) P-element-mediated enhancer detection: an efficient method for isolating and characterizing developmentally regulated genes in Drosophila. Genes Devel 3:1301–1313

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors give much thanks to Susan McCombs, Tom Miller, Frantisek Marec, Steve Garczynski, Meg Allen, and Al Handler for their reviews of the manuscript. We are indebted to Dr. Paul Shirk for his donation of plasmid constructs, p3E1.2 and p3E12Δtrl. We would also like to thank Dr. Al Handler for the pB[PUbnlsEGFP construct. We are very grateful to Eric Bruntjen, Jennifer Scott, Anne Kenny Chapman, Nina Barcenas, and Tina Vasile for their technical assistance. This project was supported by a United States Department of Agriculture-Agricultural Research Service National Program Staff funded postdoctoral position with additional funding from the Washington Tree Fruit Research Commission and the Washington State Commission on Pesticide Registration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holly J. Ferguson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferguson, H.J., Neven, L.G., Thibault, S.T. et al. Genetic transformation of the codling moth, Cydia pomonella L., with piggyBac EGFP. Transgenic Res 20, 201–214 (2011). https://doi.org/10.1007/s11248-010-9391-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-010-9391-8

Keywords

Navigation