Skip to main content

Advertisement

Log in

Polymeric Nanoparticles in Hybrid Catalytic Processing and Drug Delivery System

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Recent years have visualized the entry of various new life-threatening diseases in the form of epidemic and pandemic and hence the introduction of novel drug delivery systems is highly vital for saving the lives of people. Recent research in this area portrays a relentless search for overcoming the disadvantages of older systems and replacing them with novel systems. Polymer based drug delivery systems and nanoparticles-based systems are two such developing areas that are discussed in this review. Recent studies have also shown a surge in the application of polymer lipid hybrid nanoparticles in drug delivery systems and also bioorthogonal catalytic reactions for the release of drugs at target site by unmasking reaction of prodrugs. This review highlights the various developments and innovations in the drug delivery field in the recent years with respect to these systems and throws light on the advances in the treatment of diseases in different areas accomplished by means of these systems.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Clavadetscher J et al (2016) Copper catalysis in living systems and in situ drug synthesis. Angew Chemie Int Ed 55(50):15662–15666

    Article  CAS  Google Scholar 

  2. Bai Y, Chen J, Zimmerman SC (2018) Designed transition metal catalysts for intracellular organic synthesis. Chem Soc Rev 47(5):1811–1821

    Article  CAS  Google Scholar 

  3. Völker T, Dempwolff F, Graumann PL, Meggers E (2014) Progress towards bioorthogonal catalysis with organometallic compounds. Angew Chemie Int Ed 53(39):10536–10540

    Article  Google Scholar 

  4. Czuban M et al (2018) Bio-orthogonal chemistry and reloadable biomaterial enable local activation of antibiotic prodrugs and enhance treatments against Staphylococcus aureus infections. ACS Cent Sci 4(12):1624–1632

    Article  CAS  Google Scholar 

  5. Völker T, Meggers E (2015) Transition-metal-mediated uncaging in living human cells—an emerging alternative to photolabile protecting groups. Curr Opin Chem Biol 25:48–54

    Article  Google Scholar 

  6. Li J, Chen PR (2016) Development and application of bond cleavage reactions in bioorthogonal chemistry. Nat Chem Biol 12(3):129–137

    Article  CAS  Google Scholar 

  7. Vidal C, Tomás-Gamasa M, Destito P, López F, Mascareñas JL (2018) Concurrent and orthogonal gold (I) and ruthenium (II) catalysis inside living cells. Nat Commun 9(1):1–9

    Article  CAS  Google Scholar 

  8. Badar A, Pachera S, Ansari AS, Lohiya NK (2019) Nano Based Drug Delivery Systems: Present and Future Prospects. Nanomed Nanotechnol J 2(1):121

    Google Scholar 

  9. Patra JK, Das G, Fraceto LF (2018) “campos EVR,” Rodriguez-Torres MDP, Acosta–Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S Shin HS Nano based drug Deliv. Syst. Recent Dev. Futur. Prospect., vol. 16, p. 71,

  10. Huang R et al (2020) “Polymer-Based Bioorthogonal Nanocatalysts for the Treatment of Bacterial Biofilms,” J. Am. Chem. Soc., vol. 142, no. 24, pp. 10723–10729, doi: https://doi.org/10.1021/jacs.0c01758

  11. Tapiero H, Mathe G, Couvreur P, Tew KD, Arginine “I (2002) ” Biomed Pharmacother 56(9):439–445

    Article  CAS  Google Scholar 

  12. Wu G, Jaeger L, Bazer F, Rhoads J (Sep. 2004) Arginine deficiency in preterm infants: Biochemical mechanisms and nutritional implications. J Nutr Biochem 15:442–451. doi: https://doi.org/10.1016/j.jnutbio.2003.11.010

  13. Wu Q-X, Lin D-Q, Yao S-J (2014) Design of Chitosan and Its Water Soluble Derivatives-Based Drug Carriers with Polyelectrolyte Complexes. Mar Drugs 12(12). doi: https://doi.org/10.3390/md12126236

  14. Hamman JH (2010) Chitosan Based Polyelectrolyte Complexes as Potential Carrier Materials in Drug Delivery Systems. Mar Drugs 8(4). doi: https://doi.org/10.3390/md8041305

  15. Karande P, Mitragotri S (2009) Enhancement of transdermal drug delivery via synergistic action of chemicals. Biochim Biophys Acta - Biomembr 1788(11):2362–2373. doi: https://doi.org/10.1016/j.bbamem.2009.08.015

    Article  CAS  Google Scholar 

  16. Manosroi J, Apriyani MG, Foe K, Manosroi A (2005) Enhancement of the release of azelaic acid through the synthetic membranes by inclusion complex formation with hydroxypropyl-β-cyclodextrin. Int J Pharm 293(1):235–240. doi: https://doi.org/10.1016/j.ijpharm.2005.01.009

    Article  CAS  Google Scholar 

  17. Mathews CK, Van Holde KE, Ahern KG, Van Hold KA, Ahern KG (2000) Biochemistry. Benjamin Cummings

  18. Green MM, Blankenhorn G, Hart H (Nov. 1975) Which starch fraction is water-soluble, amylose or amylopectin? J Chem Educ 52(11):729. doi: https://doi.org/10.1021/ed052p729

  19. Katt ME, Placone AL, Wong AD, Xu ZS, Searson PC (Feb. 2016) In Vitro Tumor Models: Advantages, Disadvantages, Variables, and Selecting the Right Platform. Front Bioeng Biotechnol 4(12). doi: https://doi.org/10.3389/fbioe.2016.00012

  20. Friedrich J, Seidel C, Ebner R, Kunz-Schughart LA (2009) Spheroid-based drug screen: considerations and practical approach. Nat Protoc 4(3):309–324. doi: https://doi.org/10.1038/nprot.2008.226

    Article  CAS  Google Scholar 

  21. Tanaka R, Ueoka I, Takaki Y, Kataoka K, Saito S (1983) “High molecular weight linear polyethylenimine and poly(N-methylethylenimine),” Macromolecules, vol. 16, no. 6, pp. 849–853, Jun. doi: https://doi.org/10.1021/ma00240a003

  22. Weyts KF, Goethals EJ (1988) New synthesis of linear polyethyleneimine. Polym Bull 19(1):13–19. doi: https://doi.org/10.1007/BF00255018

    Article  CAS  Google Scholar 

  23. Yang J et al (May 2017) Backbone Degradable N-(2-Hydroxypropyl)methacrylamide Copolymer Conjugates with Gemcitabine and Paclitaxel: Impact of Molecular Weight on Activity toward Human Ovarian Carcinoma Xenografts. Mol Pharm 14(5):1384–1394. doi: https://doi.org/10.1021/acs.molpharmaceut.6b01005

  24. Zhang R, Yang J, Zhou Y, Shami PJ, Kopeček J (Jan. 2016) N-(2-Hydroxypropyl)methacrylamide Copolymer-Drug Conjugates for Combination Chemotherapy of Acute Myeloid Leukemia. Macromol Biosci 16(1):121–128. doi: https://doi.org/10.1002/mabi.201500193

  25. Gillies ER, Fréchet JMJ (2005) Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 10(1):35–43. doi: https://doi.org/10.1016/S1359-6446(04)03276-3

    Article  CAS  Google Scholar 

  26. Menjoge AR, Kannan RM, Tomalia DA (2010) Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today 15(5):171–185. doi: https://doi.org/10.1016/j.drudis.2010.01.009

    Article  CAS  Google Scholar 

  27. Kabanov AV, Lemieux P, Vinogradov S, Alakhov V (2002) Pluronic® block copolymers: novel functional molecules for gene therapy. Adv Drug Deliv Rev 54(2):223–233. doi: https://doi.org/10.1016/S0169-409X(02)00018-2

    Article  CAS  Google Scholar 

  28. Thrall JH, Medicine (2004) ” Radiology, vol. 230, no. 2, pp. 315–318, Feb. doi: https://doi.org/10.1148/radiol.2302031698

  29. Akamatsu K et al (2000) Preparation and characterization of polymer thin films containing silver and silver sulfide nanoparticles. Thin Solid Films 359(1):55–60. doi: https://doi.org/10.1016/S0040-6090(99)00684-7

    Article  CAS  Google Scholar 

  30. Gagliardi A et al (2021) “Biodegradable Polymeric Nanoparticles for Drug Delivery to Solid Tumors,” Frontiers in Pharmacology, vol. 12. [Online]. Available: https://www.frontiersin.org/article/https://doi.org/10.3389/fphar.2021.601626

  31. Masayuki Y et al (1990) Polymer micelles as novel drug carrier: Adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer. J Control Release 11(1):269–278. doi: https://doi.org/10.1016/0168-3659(90)90139-K

    Article  Google Scholar 

  32. Vauthier C, Labarre D, Ponchel G (2007) “Design aspects of poly(alkylcyanoacrylate) nanoparticles for drug delivery,” J. Drug Target., vol. 15, no. 10, pp. 641–663, Jan. doi: https://doi.org/10.1080/10611860701603372

  33. Moghimi SM, Hunter AC, Murray JC (2001) “Long-circulating and target-specific nanoparticles: theory to practice,” Pharmacol. Rev., vol. 53, no. 2, pp. 283–318, [Online]. Available: http://europepmc.org/abstract/MED/11356986

  34. Nazarov GV, Galan SE, Nazarova EV, Karkishchenko NN, Muradov MM, Stepanov VA (2009) Nanosized forms of drugs (A Review). Pharm Chem J 43(3):163–170. doi: https://doi.org/10.1007/s11094-009-0259-2

    Article  CAS  Google Scholar 

  35. Gulyaev AE, Gelperina SE, Skidan IN, Antropov AS, Kivman GY, Kreuter J (1999) Significant Transport of Doxorubicin into the Brain with Polysorbate 80-Coated Nanoparticles. Pharm Res 16(10):1564–1569. doi: https://doi.org/10.1023/A:1018983904537

    Article  CAS  Google Scholar 

  36. Huang H, Yuan Q, Yang X (2004) Preparation and characterization of metal–chitosan nanocomposites. Colloids Surf B Biointerfaces 39(1):31–37. doi: https://doi.org/10.1016/j.colsurfb.2004.08.014

    Article  CAS  Google Scholar 

  37. Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346. https://doi.org/10.1021/cr030698+

    Article  CAS  Google Scholar 

  38. Nichkova M, Dosev D, Gee SJ, Hammock BD, Kennedy IM (2005) “Microarray Immunoassay for Phenoxybenzoic Acid Using Polymer Encapsulated Eu:Gd2O3 Nanoparticles as Fluorescent Labels,” Anal. Chem., vol. 77, no. 21, pp. 6864–6873, Nov. doi: https://doi.org/10.1021/ac050826p

  39. Chen Y, Chi Y, Wen H, Lu Z (2007) “Sensitized Luminescent Terbium Nanoparticles: Preparation and Time-Resolved Fluorescence Assay for DNA,” Anal. Chem., vol. 79, no. 3, pp. 960–965, Feb. doi: https://doi.org/10.1021/ac061477h

  40. Stroh M et al (2005) Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat Med 11:678–682. doi: https://doi.org/10.1038/nm1247

    Article  CAS  Google Scholar 

  41. Michalet X et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544. doi: https://doi.org/10.1126/science.1104274

    Article  CAS  Google Scholar 

  42. Gelperina S, Kisich K, Iseman MD, Heifets L (2005) “The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis,” Am. J. Respir. Crit. Care Med., vol. 172, no. 12, pp. 1487–1490, Dec. doi: https://doi.org/10.1164/rccm.200504-613PP

  43. Yamaguchi Y, Igarashi R (2006) “[Nanotechnology for therapy of type 2 diabetes].,” Nihon Rinsho., vol. 64, no. 2, pp. 295–300, Feb.

  44. LÍM D (1960) Hydrophilic Gels for Biological Use. Nature 185(4706):117–118. doi: https://doi.org/10.1038/185117a0

    Article  Google Scholar 

  45. Agrawal P (2014) Significance of polymers in drug delivery system. J Pharmacovigil 3(1):e127

    Google Scholar 

  46. Vilar G, Tulla-Puche J, Albericio F (2012) “Polymers and drug delivery systems.,” Curr. Drug Deliv., vol. 9, no. 4, pp. 367–394, Jul. doi: https://doi.org/10.2174/156720112801323053

  47. Bruschi ML (2015) Strategies to modify the drug release from pharmaceutical systems. Woodhead Publishing

  48. Yun YH, Lee BK, Park K (2015) Controlled Drug Delivery: Historical perspective for the next generation. J Control Release 219:2–7

    Article  CAS  Google Scholar 

  49. Yun Y, Lee BK, Park K (2014) Controlled drug delivery systems: the next 30 years. Front Chem Sci Eng 8(3):276–279

    Article  CAS  Google Scholar 

  50. Rezaie HR, Esnaashary M, arjmand AA, Öchsner A (2018) A Review of Biomaterials and Their Applications in Drug Delivery. Springer

  51. Chatterjee S, Hui C-L (2019) Review of stimuli-responsive polymers in drug delivery and textile application. Molecules 24(14):2547

    Article  CAS  Google Scholar 

  52. Chauhan NPS, Meghwal K, Juneja P, Chaudhary J, Meghwal R, Punjabi PB (2015) “Controlled Release:Porous Polymer Application,”

  53. Gilding DK, Reed AM (1979) Biodegradable polymers for use in surgery—polyglycolic/poly (actic acid) homo-and copolymers: 1. Polym (Guildf) 20(12):1459–1464

    Article  CAS  Google Scholar 

  54. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (2004) Biomaterials science: an introduction to materials in medicine. Elsevier

  55. Kundu A, Nandi S, Das P, Nandi AK (2015) “Fluorescent Graphene Oxide via Polymer Grafting: An Efficient Nanocarrier for Both Hydrophilic and Hydrophobic Drugs,” ACS Appl. Mater. Interfaces, vol. 7, no. 6, pp. 3512–3523, Feb. doi: https://doi.org/10.1021/am507110r

  56. Priya VSV, Roy HK, Jyothi N, Prasanthi NL (2016) Polymers in drug delivery technology, types of polymers and applications. Sch Acad J Pharm 5:305–308

    Article  CAS  Google Scholar 

  57. Andorko JI, Hess KL, Pineault KG, Jewell CM (2016) Intrinsic immunogenicity of rapidly-degradable polymers evolves during degradation. Acta Biomater 32:24–34. doi: https://doi.org/10.1016/j.actbio.2015.12.026

    Article  CAS  Google Scholar 

  58. Elbert DL, Hubbell JA (1996) Surface treatments of polymers for biocompatibility. Annu Rev Mater Sci 26(1):365–394

    Article  CAS  Google Scholar 

  59. Wells CM, Harris M, Choi L, Murali VP, Guerra FD, Jennings JA (2019) Stimuli-responsive drug release from smart polymers. J Funct Biomater 10(3):34

    Article  CAS  Google Scholar 

  60. Martins P, Correia DM, Correia V, Lanceros-Mendez S (2020) Polymer-based actuators: back to the future. Phys Chem Chem Phys 22(27):15163–15182. doi: https://doi.org/10.1039/D0CP02436H

    Article  CAS  Google Scholar 

  61. Jeong B, Gutowska A (2002) Lessons from nature: stimuli-responsive polymers and their biomedical applications. TRENDS Biotechnol 20(7):305–311

    Article  CAS  Google Scholar 

  62. Jadhav KR, Pacharane SS, Koshy PV, Kadam VJ (2010) Smart polymers and their role in drug delivery: a review. Curr Drug ther 5(4):250–261

    Article  CAS  Google Scholar 

  63. Taghizadeh B et al (Feb. 2015) Classification of stimuli–responsive polymers as anticancer drug delivery systems. Drug Deliv 22(2):145–155. doi: https://doi.org/10.3109/10717544.2014.887157

  64. Sun X, Agate S, Salem K, Lucia L, Pal L (Nov. 2020) Hydrogel-Based Sensor Networks: Compositions, Properties, and Applications - A Review. ACS Appl Bio Mater. doi: https://doi.org/10.1021/acsabm.0c01011

  65. Coelho JF et al (2010) “Drug delivery systems: Advanced technologies potentially applicable in personalized treatments,” EPMA J., vol. 1, no. 1, pp. 164–209, doi: https://doi.org/10.1007/s13167-010-0001-x

  66. Yang M, Yu L, Guo R, Dong A, Lin C, Zhang J (2018) A modular coassembly approach to all-in-one multifunctional nanoplatform for synergistic codelivery of doxorubicin and curcumin. Nanomaterials 8(3):167

    Article  Google Scholar 

  67. Liu H et al (2019) “Injectable, Biodegradable, Thermosensitive Nanoparticles-Aggregated Hydrogel with Tumor-Specific Targeting, Penetration, and Release for Efficient Postsurgical Prevention of Tumor Recurrence,” ACS Appl. Mater. Interfaces, vol. 11, no. 22, pp. 19700–19711, doi: https://doi.org/10.1021/acsami.9b01987

  68. Kallerup R, Foged C (2015) “Advances in Delivery Science and Technology,” pp.15–29

  69. Liu Y, Wang W, Yang J, Zhou C, Sun J (2013) pH-sensitive polymeric micelles triggered drug release for extracellular and intracellular drug targeting delivery. asian J Pharm Sci 8(3):159–167

    Article  Google Scholar 

  70. Bae Y, Nishiyama N, Fukushima S, Koyama H, Yasuhiro M, Kataoka K (2005) Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjug Chem 16(1):122–130

    Article  CAS  Google Scholar 

  71. Kavitha T, Abdi SIH, Park S-Y (2013) pH-sensitive nanocargo based on smart polymer functionalized graphene oxide for site-specific drug delivery. Phys Chem Chem Phys 15(14):5176–5185

    Article  CAS  Google Scholar 

  72. Galaev IY, Mattiasson B (1999) ‘Smart’polymers and what they could do in biotechnology and medicine. Trends Biotechnol 17(8):335–340

    Article  CAS  Google Scholar 

  73. Yemisci M et al (2015) “Systemically administered brain-targeted nanoparticles transport peptides across the blood-brain barrier and provide neuroprotection.,” J. Cereb. blood flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab., vol. 35, no. 3, pp. 469–475, doi: https://doi.org/10.1038/jcbfm.2014.220

  74. Gaudin A et al (2014) Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury. ” Nat Nanotechnol 9(12):1054–1062. doi: https://doi.org/10.1038/nnano.2014.274

    Article  CAS  Google Scholar 

  75. Karatas H et al (2009) A nanomedicine transports a peptide caspase-3 inhibitor across the blood-brain barrier and provides neuroprotection. J Neurosci 29:13761–13769. doi: https://doi.org/10.1523/jneurosci.4246-09.2009

    Article  CAS  Google Scholar 

  76. Liu X, Ye M, An C, Pan L, Ji L (2013) “The effect of cationic albumin-conjugated PEGylated tanshinone IIA nanoparticles on neuronal signal pathways and neuroprotection in cerebral ischemia.,” Biomaterials, vol. 34, no. 28, pp. 6893–6905, Sep. doi: https://doi.org/10.1016/j.biomaterials.2013.05.021

  77. Liu X, An C, Jin P, Liu X, Wang L (Jan. 2013) Protective effects of cationic bovine serum albumin-conjugated PEGylated tanshinone IIA nanoparticles on cerebral ischemia. ” Biomaterials 34(3):817–830. doi: https://doi.org/10.1016/j.biomaterials.2012.10.017

  78. Kurakhmaeva KB et al (2009) “Brain targeting of nerve growth factor using poly(butyl cyanoacrylate) nanoparticles.,” J. Drug Target., vol. 17, no. 8, pp. 564–574, doi: https://doi.org/10.1080/10611860903112842

  79. Kulkarni PV, Roney CA, Antich PP, Bonte FJ, Raghu AV, Aminabhavi TM (2010) Quinoline-n-butylcyanoacrylate-based nanoparticles for brain targeting for the diagnosis of Alzheimer’s disease. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(1):35–47. doi: https://doi.org/10.1002/wnan.59

    Article  CAS  Google Scholar 

  80. Liu Z et al (2013) B6 peptide-modified PEG-PLA nanoparticles for enhanced brain delivery of neuroprotective peptide. Bioconjug Chem 24:997–1007. doi: https://doi.org/10.1021/bc400055h

    Article  CAS  Google Scholar 

  81. Wang ZH, Wang ZY, Sun CS, Wang CY, Jiang TY, Wang SL (2010) Trimethylated chitosan-conjugated PLGA nanoparticles for the delivery of drugs to the brain. Biomaterials 31(5):908–915. doi: https://doi.org/10.1016/j.biomaterials.2009.09.104

    Article  CAS  Google Scholar 

  82. Huang R et al (2009) “Neuroprotection in a 6-hydroxydopamine-lesioned Parkinson model using lactoferrin-modified nanoparticles.,” J. Gene Med., vol. 11, no. 9, pp. 754–763, doi: https://doi.org/10.1002/jgm.1361

  83. Huang R et al (2010) Gene therapy using lactoferrin-modified nanoparticles in a rotenone-induced chronic Parkinson model. J Neurol Sci 290(1):123–130. doi: https://doi.org/10.1016/j.jns.2009.09.032

    Article  CAS  Google Scholar 

  84. Hu K, Shi Y, Jiang W, Han J, Huang S, Jiang X (2011) “Lactoferrin conjugated PEG-PLGA nanoparticles for brain delivery: preparation, characterization and efficacy in Parkinson’s disease.,” Int. J. Pharm., vol. 415, no. 1–2, pp. 273–283, Aug. doi: https://doi.org/10.1016/j.ijpharm.2011.05.062

  85. Pahuja R et al (May 2015) Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats. ” ACS Nano 9(5):4850–4871. doi: https://doi.org/10.1021/nn506408v

  86. Zhou H-Y, Hao J-L, Wang S, Zheng Y, Zhang W-S (Jun. 2013) Nanoparticles in the ocular drug delivery. Int J Ophthalmol 6(3):390–396. doi: https://doi.org/10.3980/j.issn.2222-3959.2013.03.25

  87. Yang H, Tyagi P, Kadam RS, Holden CA, Kompella UB (2012) “Hybrid dendrimer hydrogel/PLGA nanoparticle platform sustains drug delivery for one week and antiglaucoma effects for four days following one-time topical administration.,” ACS Nano, vol. 6, no. 9, pp. 7595–7606, Sep. doi: https://doi.org/10.1021/nn301873v

  88. Chen R et al (2010) “Methazolamide calcium phosphate nanoparticles in an ocular delivery system.,” Yakugaku Zasshi, vol. 130, no. 3, pp. 419–424, doi: https://doi.org/10.1248/yakushi.130.419

  89. Ammar HO, Salama HA, Ghorab M, Mahmoud AA (2009) Nanoemulsion as a potential ophthalmic delivery system for dorzolamide hydrochloride. AAPS PharmSciTech 10(3):808–819. doi: https://doi.org/10.1208/s12249-009-9268-4

    Article  CAS  Google Scholar 

  90. Li R et al (2011) “A potential new therapeutic system for glaucoma: Solid lipid nanoparticles containing methazolamide,” J. Microencapsul., vol. 28, pp. 134–141, doi: https://doi.org/10.3109/02652048.2010.539304

  91. Bhagav P, Upadhyay H, Chandran S (2011) “Brimonidine Tartrate–Eudragit Long-Acting Nanoparticles: Formulation, Optimization, In Vitro and In Vivo Evaluation,” AAPS PharmSciTech, vol. 12, no. 4, pp. 1087–1101, doi: https://doi.org/10.1208/s12249-011-9675-1

  92. Attama A, Reichl S, Müller-Goymann C (2009) “Sustained Release and Permeation of Timolol from Surface-Modified Solid Lipid Nanoparticles through Bioengineered Human Cornea,” Curr. Eye Res., vol. 34, pp. 698–705, Aug. doi: https://doi.org/10.1080/02713680903017500

  93. Tamilvanan S, Kumar B (2011) “Influence of acetazolamide loading on the (in vitro) performances of non-phospholipid-based cationic nanosized emulsion in comparison with phospholipid-based anionic and neutral-charged nanosized emulsions,” Drug Dev. Ind. Pharm., vol. 37, pp. 1003–1015, Mar. doi: https://doi.org/10.3109/03639045.2011.555407

  94. Vega E, Gamisans F, García ML, Chauvet A, Lacoulonche F, Egea MA (2008) PLGA nanospheres for the ocular delivery of flurbiprofen: Drug release and interactions. J Pharm Sci 97(12):5306–5317. doi: https://doi.org/10.1002/jps.21383

    Article  CAS  Google Scholar 

  95. Shen J, Sun M, Ping Q, Ying Z, Liu W (2009) Incorporation of liquid lipid in lipid nanoparticles for ocular drug delivery enhancement. Nanotechnology 21(2):25101. doi: https://doi.org/10.1088/0957-4484/21/2/025101

    Article  CAS  Google Scholar 

  96. Badawi AA, El-Laithy HM, El Qidra RK, Mofty HE, El dally M (2008) Chitosan based nanocarriers for indomethacin ocular delivery. Arch Pharm Res 31(8):1040. doi: https://doi.org/10.1007/s12272-001-1266-6

    Article  CAS  Google Scholar 

  97. Gokce EH et al (2008) “Cyclosporine A loaded SLNs: evaluation of cellular uptake and corneal cytotoxicity.,” Int. J. Pharm., vol. 364, no. 1, pp. 76–86, doi: https://doi.org/10.1016/j.ijpharm.2008.07.028

  98. Yenice I et al (Sep. 2008) “Hyaluronic acid coated poly-epsilon-caprolactone nanospheres deliver high concentrations of cyclosporine A into the cornea. ” Exp Eye Res 87(3):162–167. doi: https://doi.org/10.1016/j.exer.2008.04.002

  99. Sandri G et al (2010) Chitosan-associated SLN: in vitro and ex vivo characterization of cyclosporine A loaded ophthalmic systems. ” J Microencapsul 27(8):735–746. doi: https://doi.org/10.3109/02652048.2010.517854

    Article  CAS  Google Scholar 

  100. Liu Z et al (2011) “Preparation and evaluation of solid lipid nanoparticles of baicalin for ocular drug delivery system in vitro and in vivo.,” Drug Dev. Ind. Pharm., vol. 37, no. 4, pp. 475–481, doi: https://doi.org/10.3109/03639045.2010.522193

  101. Agnihotri SM, Vavia PR (2009) Diclofenac-loaded biopolymeric nanosuspensions for ophthalmic application. Nanomed Nanatechnol Biol Med 5(1):90–95. doi: https://doi.org/10.1016/j.nano.2008.07.003

    Article  CAS  Google Scholar 

  102. Zhu X et al (2012) Synthesis of thiolated chitosan and preparation nanoparticles with sodium alginate for ocular drug delivery. ” Mol Vis 18:1973–1982

    CAS  Google Scholar 

  103. Vega E, Egea MA, Calpena AC, Espina M, García ML (2012) Role of hydroxypropyl-β-cyclodextrin on freeze-dried and gamma-irradiated PLGA and PLGA-PEG diblock copolymer nanospheres for ophthalmic flurbiprofen delivery. ” Int J Nanomedicine 7:1357–1371. doi: https://doi.org/10.2147/IJN.S28481

    Article  CAS  Google Scholar 

  104. Durairaj C, Kadam RS, Chandler JW, Hutcherson SL, Kompella UB (2010) “Nanosized dendritic polyguanidilyated translocators for enhanced solubility, permeability, and delivery of gatifloxacin.,” Invest. Ophthalmol. Vis. Sci., vol. 51, no. 11, pp. 5804–5816, Nov. doi: https://doi.org/10.1167/iovs.10-5388

  105. Contreras-Ruiz L et al (May 2010) “Ocular tolerance to a topical formulation of hyaluronic acid and chitosan-based nanoparticles. ” Cornea 29(5):550–558. doi: https://doi.org/10.1097/ICO.0b013e3181bd9eee

  106. Nagarwal RC, Singh PN, Kant S, Maiti P, Pandit JK (2010) “Chitosan coated PLA nanoparticles for ophthalmic delivery: characterization, in-vitro and in-vivo study in rabbit eye.,” J. Biomed. Nanotechnol., vol. 6, no. 6, pp. 648–657, Dec. doi: https://doi.org/10.1166/jbn.2010.1168

  107. Zhang L, Li Y, Zhang C, Wang Y, Song C (2009) Pharmacokinetics and tolerance study of intravitreal injection of dexamethasone-loaded nanoparticles in rabbits. ” Int J Nanomedicine 4:175–183. doi: https://doi.org/10.2147/ijn.s6428

    Article  CAS  Google Scholar 

  108. Sakai T, Ishihara T, Higaki M, Akiyama G, Tsuneoka H (2011) “Therapeutic effect of stealth-type polymeric nanoparticles with encapsulated betamethasone phosphate on experimental autoimmune uveoretinitis.,” Invest. Ophthalmol. Vis. Sci., vol. 52, no. 3, pp. 1516–1521, Mar. doi: https://doi.org/10.1167/iovs.10-5676

  109. Koirala A, Makkia RS, Cooper MJ, Naash MI (2011) “Nanoparticle-mediated gene transfer specific to retinal pigment epithelial cells.,” Biomaterials, vol. 32, no. 35, pp. 9483–9493, Dec. doi: https://doi.org/10.1016/j.biomaterials.2011.08.062

  110. Liu H, Liu Y, Ma Z, Wang J, Zhang Q (2011) “A lipid nanoparticle system improves siRNA efficacy in RPE cells and a laser-induced murine CNV model.,” Invest. Ophthalmol. Vis. Sci., vol. 52, no. 7, pp. 4789–4794, Jul. doi: https://doi.org/10.1167/iovs.10-5891

  111. Zhou X, Wong LL, Karakoti AS, Seal S, McGinnis JF (Feb. 2011) Nanoceria inhibit the development and promote the regression of pathologic retinal neovascularization in the Vldlr knockout mouse. ” PLoS One 6(2):e16733. doi: https://doi.org/10.1371/journal.pone.0016733

  112. Sakai T et al (2007) “Prolonged protective effect of basic fibroblast growth factor-impregnated nanoparticles in royal college of surgeons rats.,” Invest. Ophthalmol. Vis. Sci., vol. 48, no. 7, pp. 3381–3387, doi: https://doi.org/10.1167/iovs.06-1242

  113. Ding X-Q, Quiambao AB, Fitzgerald JB, Cooper MJ, Conley SM, Naash MI (Oct. 2009) Ocular delivery of compacted DNA-nanoparticles does not elicit toxicity in the mouse retina. ” PLoS One 4(10):e7410. doi: https://doi.org/10.1371/journal.pone.0007410

  114. Mahaling B, Katti DS (Mar. 2016) Understanding the influence of surface properties of nanoparticles and penetration enhancers for improving bioavailability in eye tissues in vivo. Int J Pharm 501:1–2. doi: https://doi.org/10.1016/j.ijpharm.2016.01.053

  115. Matoba T, Koga J-I, Nakano K, Egashira K, Tsutsui H (Sep. 2017) Nanoparticle-mediated drug delivery system for atherosclerotic cardiovascular disease. ” J Cardiol 70(3):206–211. doi: https://doi.org/10.1016/j.jjcc.2017.03.005

  116. Duan SZ, Usher MG, Mortensen RM (2008) “Peroxisome proliferator-activated receptor-gamma-mediated effects in the vasculature.,” Circ. Res., vol. 102, no. 3, pp. 283–294, Feb. doi: https://doi.org/10.1161/CIRCRESAHA.107.164384

  117. Chang K et al (Oct. 2010) Pioglitazone suppresses inflammation in vivo in murine carotid atherosclerosis: novel detection by dual-target fluorescence molecular imaging. Arterioscler Thromb Vasc Biol 30(10):1933–1939. doi: https://doi.org/10.1161/ATVBAHA.110.206342

  118. Lee P-C, Zan B-S, Chen L-T, Chung T-W (2019) Multifunctional PLGA-based nanoparticles as a controlled release drug delivery system for antioxidant and anticoagulant therapy. ” Int J Nanomedicine 14:1533–1549. doi: https://doi.org/10.2147/IJN.S174962

    Article  CAS  Google Scholar 

  119. Jia C et al (2017) Gold nanoparticle-based miR155 antagonist macrophage delivery restores the cardiac function in ovariectomized diabetic mouse model. Int J Nanomedicine 12:4963–4979. doi: https://doi.org/10.2147/IJN.S138400

    Article  CAS  Google Scholar 

  120. Serpooshan V et al (Jan. 2015) “[Pyr1]-Apelin-13 delivery via nano-liposomal encapsulation attenuates pressure overload-induced cardiac dysfunction. ” Biomaterials 37:289–298. doi: https://doi.org/10.1016/j.biomaterials.2014.08.045

  121. Sanchez-Gaytan BL et al (2015) “HDL-mimetic PLGA nanoparticle to target atherosclerosis plaque macrophages.,” Bioconjug. Chem., vol. 26, no. 3, pp. 443–451, doi: https://doi.org/10.1021/bc500517k

  122. Emeje MO, Obidike IC, Akpabio EI, Ofoefule SI (2012) “Nanotechnology in drug delivery,”Recent Adv. Nov. drug Carr. Syst., pp.69–106,

  123. Deng Y et al (2019) “Application of the Nano-Drug Delivery System in Treatment of Cardiovascular Diseases,”Front. Bioeng. Biotechnol., vol. 7,

  124. Suri SS, Fenniri H, Singh B (2007) Nanotechnology-based drug delivery systems. J Occup Med Toxicol 2(1):16

    Article  Google Scholar 

  125. Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O (2020) Therapeutic Nanoparticles and Their Targeted Delivery Applications. Molecules 25(9):2193

    Article  CAS  Google Scholar 

  126. Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current status and future prospects. FASEB J 19(3):311–330

    Article  CAS  Google Scholar 

  127. Madkour L (2019) “Correlation between nucleic acids and nanoparticle therapeutics for cancer treatment,” pp.151–171

  128. Rizvi SAA, Saleh AM (Jan. 2018) Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J SPJ Off Publ Saudi Pharm Soc 26(1):64–70. doi: https://doi.org/10.1016/j.jsps.2017.10.012

  129. Shi J, Votruba AR, Farokhzad OC, Langer R (2010) Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett 10(9):3223–3230

    Article  CAS  Google Scholar 

  130. Li Z, Tan S, Li S, Shen Q, Wang K (2017) Cancer drug delivery in the nano era: An overview and perspectives. Oncol Rep 38(2):611–624

    Article  CAS  Google Scholar 

  131. Desai N (Jun. 2012) Challenges in development of nanoparticle-based therapeutics. AAPS J 14(2):282–295. doi: https://doi.org/10.1208/s12248-012-9339-4

  132. Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R (2021) Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 20(2):101–124. doi: https://doi.org/10.1038/s41573-020-0090-8

    Article  CAS  Google Scholar 

  133. Bhatia S (2016) In: Bhatia S (ed) “Nanoparticles Types, Classification, Characterization, Fabrication Methods and Drug Delivery Applications BT - Natural Polymer Drug Delivery Systems: Nanoparticles, Plants, and Algae. Springer International Publishing, Cham, pp 33–93

    Google Scholar 

  134. Lombardo D, Kiselev MA, Caccamo MT (2019) “Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine,” J. Nanomater., vol. 2019

  135. Agapovichev AV, Kokareva VV, Smelov VG, Stov AV (2016) “Selective laser melting of titanium alloy: investigation of mechanical properties and microstructure,” in IOP Conference Series: Materials Science and Engineering, vol. 156, no. 1, p. 12031

  136. Mary Ealias A (Dec. 2017) “A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf Ser Mater Sci Eng 263:32019. doi: https://doi.org/10.1088/1757-899X/263/3/032019

  137. Santos A, Veiga F, Figueiras A (2019) Dendrimers as pharmaceutical excipients: synthesis, properties, toxicity and biomedical applications. Mater (Basel) 13(1):65

    Article  Google Scholar 

  138. Abd-El-Aziz AS, Agatemor C (2018) Emerging opportunities in the biomedical applications of dendrimers. J Inorg Organomet Polym Mater 28(2):369–382

    Article  CAS  Google Scholar 

  139. Chauhan AS (Apr. 2018) “Dendrimers for Drug Delivery. ” Molecules 23(4). doi: https://doi.org/10.3390/molecules23040938

  140. Ilunga AK, Meijboom R (2019) A review of dendrimer-encapsulated metal nanocatalysts applied in the fine chemical transformations. Catal Lett 149(1):84–99

    Article  CAS  Google Scholar 

  141. Bonifacio BV, da Silva PB, dos Santos Ramos MA, Negri KMS, Bauab TM, Chorilli M (2014) Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomedicine 9:1

    Google Scholar 

  142. Katti DS, Robinson KW, Ko FK, Laurencin CT (2004) Bioresorbable nanofiber-based systems for wound healing and drug delivery: Optimization of fabrication parameters. J Biomed Mater Res Part B Appl Biomater An Off J Soc Biomater Japanese Soc Biomater Aust Soc Biomater Korean Soc Biomater 70(2):286–296

    Google Scholar 

  143. Christine E, Zrazhevskiy PP, Bagalkot V, Gao X (2012) “Quantum dots as a platform for nanoparticle drug delivery vehicle design,”Adv Drug Deliv Rev,

  144. Strong LE, West JL (2015) Hydrogel-coated near infrared absorbing nanoshells as light-responsive drug delivery vehicles. ACS Biomater Sci Eng 1(8):685–692

    Article  CAS  Google Scholar 

  145. Mukherjee B (2014) In: Dey NS (ed) “Current Status and Future Scope for Nanomaterials in Drug Delivery. IntechOpen, Rijeka. Ch. 16.

    Chapter  Google Scholar 

  146. Singandhupe RB, Sethi RR (2016) “Imperial Journal of Interdisciplinary Research,”

  147. Souri S, Hadilou N, Navid HA, Sadighi Bonabi R, Anvari A (2021) A rational design of multimodal asymmetric nanoshells as efficient tunable absorbers within the biological optical window. Sci Rep 11(1):15115. doi: https://doi.org/10.1038/s41598-021-94409-9

    Article  CAS  Google Scholar 

  148. Hong S, Choi DW, Kim HN, Park CG, Lee W, Park HH (Jun. 2020) Protein-Based Nanoparticles as Drug Delivery Systems. ” Pharm 12(7). doi: https://doi.org/10.3390/pharmaceutics12070604

  149. Saleh T, Soudi T, Shojaosadati SA (2019) “Aptamer functionalized curcumin-loaded human serum albumin (HSA) nanoparticles for targeted delivery to HER-2 positive breast cancer cells.,” Int. J. Biol. Macromol., vol. 130, pp. 109–116, Jun. doi: https://doi.org/10.1016/j.ijbiomac.2019.02.129

  150. Mottaghitalab F et al (2017) “Targeted Delivery System Based on Gemcitabine-Loaded Silk Fibroin Nanoparticles for Lung Cancer Therapy,” ACS Appl. Mater. Interfaces, vol. 9, no. 37, pp. 31600–31611, doi: https://doi.org/10.1021/acsami.7b10408

  151. Sahoo N, Sahoo RK, Biswas N, Guha A, Kuotsu K (2015) “Recent advancement of gelatin nanoparticles in drug and vaccine delivery.,” Int. J. Biol. Macromol., vol. 81, pp. 317–331, Nov. doi: https://doi.org/10.1016/j.ijbiomac.2015.08.006

  152. Lohcharoenkal W, Wang L, Chen YC, Rojanasakul Y (2014) “Protein nanoparticles as drug delivery carriers for cancer therapy.,” Biomed Res. Int., vol. p. 180549, 2014, doi: https://doi.org/10.1155/2014/180549

  153. Staples M, Daniel K, Cima M, Langer R (2006) “Application of Micro- and Nano-Electromechanical Devices to Drug Delivery,” Pharm. Res., vol. 23, pp. 847–863, Jun. doi: https://doi.org/10.1007/s11095-006-9906-4

  154. Meng E, Hoang T (2012) MEMS-enabled implantable drug infusion pumps for laboratory animal research, preclinical, and clinical applications. Adv Drug Deliv Rev 64(14):1628–1638

    Article  CAS  Google Scholar 

  155. Stevenson CL, Santini JT Jr, Langer R (2012) Reservoir-based drug delivery systems utilizing microtechnology. Adv Drug Deliv Rev 64(14):1590–1602

    Article  CAS  Google Scholar 

  156. Herrlich S, Spieth S, Messner S, Zengerle R (2012) Osmotic micropumps for drug delivery. Adv Drug Deliv Rev 64(14):1617–1627

    Article  CAS  Google Scholar 

  157. Amirouche F, Zhou Y, Johnson T (2009) Current micropump technologies and their biomedical applications. Microsyst Technol 15(5):647–666

    Article  CAS  Google Scholar 

  158. Müller RH, Radtke M, Wissing SA (2002) Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 54:S131–S155. doi: https://doi.org/10.1016/S0169-409X(02)00118-7

    Article  Google Scholar 

  159. Scioli Montoto S, Muraca G, Ruiz ME “Solid Lipid Nanoparticles for Drug Delivery: Pharmacological and Biopharmaceutical Aspects,” Frontiers in Molecular Biosciences, vol. 7. p. 319, 2020, [Online]. Available: https://www.frontiersin.org/article/https://doi.org/10.3389/fmolb.2020.587997

  160. Rahman M et al (2020) Cationic Solid Lipid Nanoparticles of Resveratrol for Hepatocellular Carcinoma Treatment: Systematic Optimization, in vitro Characterization and Preclinical Investigation. Int J Nanomedicine 15:9283–9299. doi: https://doi.org/10.2147/IJN.S277545

    Article  CAS  Google Scholar 

  161. Smith T et al (Oct. 2020) Application of smart solid lipid nanoparticles to enhance the efficacy of 5-fluorouracil in the treatment of colorectal cancer. Sci Rep 10(1):16989. doi: https://doi.org/10.1038/s41598-020-73218-6

  162. Parvez S et al (Jul. 2020) Modified solid lipid nanoparticles encapsulated with Amphotericin B and Paromomycin: an effective oral combination against experimental murine visceral leishmaniasis. ” Sci Rep 10(1):12243. doi: https://doi.org/10.1038/s41598-020-69276-5

  163. Mishra V et al (Oct. 2018) Solid Lipid Nanoparticles: Emerging Colloidal Nano Drug Delivery Systems. ” Pharm 10(4). doi: https://doi.org/10.3390/pharmaceutics10040191

  164. Abbas H, Refai H, Sayed NE (Aug. 2018) “Superparamagnetic Iron Oxide-Loaded Lipid Nanocarriers Incorporated in Thermosensitive In Situ Gel for Magnetic Brain Targeting of Clonazepam. ” J Pharm Sci 107(8):2119–2127. doi: https://doi.org/10.1016/j.xphs.2018.04.007

  165. et al., “Lipophilic Prodrug of Floxuridine Loaded into Solid Lipid Nanoparticles: In Vitro Cytotoxicity Studies on Different Human Cancer Cell Lines,” J. Nanosci. Nanotechnol., vol. 18, no. 1, pp. 556–563, 2018, doi: 10.1166/jnn.2018.13964

  166. Gonçalez ML, Rigon RB, Pereira-da-Silva MA, Chorilli M (2017) “Curcumin-loaded cationic solid lipid nanoparticles as a potential platform for the treatment of skin disorders.,” Pharmazie, vol. 72, no. 12, pp. 721–727, Dec. doi: https://doi.org/10.1691/ph.2017.7101

  167. Jose J, Netto G (2019) Role of solid lipid nanoparticles as photoprotective agents in cosmetics. J Cosmet Dermatol 18(1):315–321. doi: https://doi.org/10.1111/jocd.12504

    Article  Google Scholar 

  168. Kaur A, Goindi S, Katare OP (Aug. 2016) “Formulation, characterisation and in vivo evaluation of lipid-based nanocarrier for topical delivery of diflunisal. ” J Microencapsul 33(5):475–486. doi: https://doi.org/10.1080/02652048.2016.1216189

  169. Ruzycka-Ayoush M et al (2021) Quantum dots as targeted doxorubicin drug delivery nanosystems in human lung cancer cells. Cancer Nanotechnol 12(1):8. doi: https://doi.org/10.1186/s12645-021-00077-9

    Article  CAS  Google Scholar 

  170. Olerile LD et al (Feb. 2017) Near-infrared mediated quantum dots and paclitaxel co-loaded nanostructured lipid carriers for cancer theragnostic. ” Colloids Surf B Biointerfaces 150:121–130. doi: https://doi.org/10.1016/j.colsurfb.2016.11.032

  171. Chen T, Zhao T, Wei D, Wei Y, Li Y, Zhang H (2013) Core–shell nanocarriers with ZnO quantum dots-conjugated Au nanoparticle for tumor-targeted drug delivery. Carbohydr Polym 92(2):1124–1132. doi: https://doi.org/10.1016/j.carbpol.2012.10.022

    Article  CAS  Google Scholar 

  172. Gu Z, Da Silva CG, Van der Maaden K, Ossendorp F, Cruz LJ (2020) “Liposome-Based Drug Delivery Systems in Cancer Immunotherapy.,” Pharmaceutics, vol. 12, no. 11, Nov. doi: https://doi.org/10.3390/pharmaceutics12111054

  173. Stremersch S, Vandenbroucke RE, Van Wonterghem E, Hendrix A, De Smedt SC, Raemdonck K (Jun. 2016) Comparing exosome-like vesicles with liposomes for the functional cellular delivery of small RNAs. ” J Control Release 232:51–61. doi: https://doi.org/10.1016/j.jconrel.2016.04.005

  174. Liu Y, Chen X-G, Yang P-P, Qiao Z-Y, Wang H (2019) “Tumor Microenvironmental pH and Enzyme Dual Responsive Polymer-Liposomes for Synergistic Treatment of Cancer Immuno-Chemotherapy.,” Biomacromolecules, vol. 20, no. 2, pp. 882–892, Feb. doi: https://doi.org/10.1021/acs.biomac.8b01510

  175. Rahman AM, Yusuf SW, Ewer MS (2007) “Anthracycline-induced cardiotoxicity and the cardiac-sparing effect of liposomal formulation,” Int. J. Nanomedicine, vol. 2, no. 4, pp. 567–583, [Online]. Available: http://europepmc.org/abstract/MED/18203425

  176. Chang TC et al (Mar. 2015) Phase I study of nanoliposomal irinotecan (PEP02) in advanced solid tumor patients. ” Cancer Chemother Pharmacol 75(3):579–586. doi: https://doi.org/10.1007/s00280-014-2671-x

  177. Zamboni WC et al (Feb. 2009) Phase I and pharmacokinetic study of pegylated liposomal CKD-602 in patients with advanced malignancies. Clin Cancer Res 15(4):1466–1472. doi: https://doi.org/10.1158/1078-0432.CCR-08-1405

  178. Bashir S, Teo YY, Ramesh S, Ramesh K, Mushtaq MW (2018) Rheological behavior of biodegradable N-succinyl chitosan-g-poly (acrylic acid) hydrogels and their applications as drug carrier and in vitro theophylline release. Int J Biol Macromol 117:454–466. doi: https://doi.org/10.1016/j.ijbiomac.2018.05.182

    Article  CAS  Google Scholar 

  179. Zhao M et al (Sep. 2019) Codelivery of paclitaxel and temozolomide through a photopolymerizable hydrogel prevents glioblastoma recurrence after surgical resection. ” J Control Release 309:72–81. doi: https://doi.org/10.1016/j.jconrel.2019.07.015

  180. Zhao X, Wang Z (2019) A pH-sensitive microemulsion-filled gellan gum hydrogel encapsulated apigenin: Characterization and in vitro release kinetics. Colloids Surf B Biointerfaces 178:245–252. doi: https://doi.org/10.1016/j.colsurfb.2019.03.015

    Article  CAS  Google Scholar 

  181. Yan X, Qi M, Li P, Zhan Y, Shao H (Oct. 2017) Apigenin in cancer therapy: anti-cancer effects and mechanisms of action. Cell Biosci 7:50. doi: https://doi.org/10.1186/s13578-017-0179-x

  182. Sarishti S, Anita B, Neeru G (2020) “Nanotechnology in cancer therapy: An overview and perspectives (Review),” International Journal of Pharmaceutical Chemistry and Analysis, vol. IP Innovative Publication, p. 10669, 2020, doi: 2394-2797

  183. Liu J, Cheng Y, Wang X, Zhang L, Wang ZJ (2018) Cancer characteristic gene selection via sample learning based on deep sparse filtering. Sci Rep 8(1):1–13

    Google Scholar 

  184. Sung H et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249

    Article  Google Scholar 

  185. et al., “Nano based drug delivery systems: recent developments and future prospects,” Journal of nanobiotechnology, vol. 16, no. 1. Research Institute of Biotechnology & Medical Converged Science,Dongguk University-Seoul, Goyang-si, 10326, Republic of Korea., p. 71, 2018, doi:10.1186/s12951-018-0392-8

  186. Bermúdez JM, Cid AG, Romero AI, Villegas M, Villegas NA, Palma SD (2017) New trends in the antimicrobial agents delivery using nanoparticles. ” in Antimicrobial Nanoarchitectonics. Elsevier, pp 1–28

  187. Colone M, Calcabrini A, Stringaro A (Oct. 2020) Drug Delivery Systems of Natural Products in Oncology. ” Molecules 25(19). doi: https://doi.org/10.3390/molecules25194560

  188. Kumar R et al (2020) Core–shell nanostructures: perspectives towards drug delivery applications. J Mater Chem B 8(39):8992–9027. doi: https://doi.org/10.1039/D0TB01559H

    Article  CAS  Google Scholar 

  189. Peddi PF, Hurvitz SA (2014) “Ado-trastuzumab emtansine (T-DM1) in human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer: latest evidence and clinical potential,” Ther. Adv. Med. Oncol., vol. 6, no. 5, pp. 202–209, Sep. doi: https://doi.org/10.1177/1758834014539183

  190. Kolpashchikov DM (2010) Binary probes for nucleic acid analysis. Chem Rev 110(8):4709–4723

    Article  CAS  Google Scholar 

  191. Liu J, Cao Z, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109(5):1948–1998

    Article  CAS  Google Scholar 

  192. Lu C-H, Willner B, Willner I (2013) DNA nanotechnology: from sensing and DNA machines to drug-delivery systems. ACS Nano 7(10):8320–8332

    Article  CAS  Google Scholar 

  193. Zhang Z, Balogh D, Wang F, Sung SY, Nechushtai R, Willner I (2013) Biocatalytic release of an anticancer drug from nucleic-acids-capped mesoporous SiO2 Using DNA or molecular biomarkers as triggering stimuli. ACS Nano 7(10):8455–8468

    Article  CAS  Google Scholar 

  194. Lu C, Willner I (2015) Stimuli-Responsive DNA‐Functionalized Nano‐/Microcontainers for Switchable and Controlled Release. Angew Chemie Int Ed 54(42):12212–12235

    Article  CAS  Google Scholar 

  195. Yu G, Yang J, Xia D, Yao Y (2014) An enzyme-responsive supra-amphiphile constructed by pillar [5] arene/acetylcholine molecular recognition. RSC Adv 4(36):18763–18771

    Article  CAS  Google Scholar 

  196. Zhou J, Chen M, Diao G (2014) Synthesis of the first amphiphilic pillar [6] arene and its enzyme-responsive self-assembly in water. Chem Commun 50(80):11954–11956

    Article  CAS  Google Scholar 

  197. Gao L, Zheng B, Chen W, Schalley CA (2015) Enzyme-responsive pillar [5] arene-based polymer-substituted amphiphiles: synthesis, self-assembly in water, and application in controlled drug release. Chem Commun 51(80):14901–14904

    Article  CAS  Google Scholar 

  198. Zhang X et al (2017) Enzyme-regulated fast self-healing of a pillararene-based hydrogel. Biomacromolecules 18(6):1885–1892

    Article  CAS  Google Scholar 

  199. Wang Y, Pei Z, Feng W, Pei Y (2019) Stimuli-responsive supramolecular nano-systems based on pillar [n] arenes and their related applications. J Mater Chem B 7(48):7656–7675

    Article  CAS  Google Scholar 

  200. Chen Q et al (2016) Intelligent albumin–MnO2 nanoparticles as pH-/H2O2‐responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy. Adv Mater 28(33):7129–7136

    Article  CAS  Google Scholar 

  201. Kotagiri N, Sudlow GP, Akers WJ, Achilefu S (2015) Breaking the depth dependency of phototherapy with Cerenkov radiation and low-radiance-responsive nanophotosensitizers. Nat Nanotechnol 10(4):370–379. doi: https://doi.org/10.1038/nnano.2015.17

    Article  CAS  Google Scholar 

  202. Lin H, Chen Y, Shi J (2018) Nanoparticle-triggered in situ catalytic chemical reactions for tumour-specific therapy. Chem Soc Rev 47(6):1938–1958

    Article  CAS  Google Scholar 

  203. Zhang C, Ni D, Liu Y, Yao H, Bu W, Shi J (2017) Magnesium silicide nanoparticles as a deoxygenation agent for cancer starvation therapy. Nat Nanotechnol 12(4):378–386

    Article  CAS  Google Scholar 

  204. Li S-Y et al (2017) Cancer cell membrane camouflaged cascade bioreactor for cancer targeted starvation and photodynamic therapy. ACS Nano 11(7):7006–7018

    Article  CAS  Google Scholar 

  205. Fu J, Shao Y, Wang L, Zhu Y (2015) Lysosome-controlled efficient ROS overproduction against cancer cells with a high pH-responsive catalytic nanosystem. Nanoscale 7(16):7275–7283

    Article  CAS  Google Scholar 

  206. Zhang C et al (2016) Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized Fenton reaction. Angew Chemie 128(6):2141–2146

    Article  Google Scholar 

  207. Radhika NP, Selvin R, Kakkar R, Umar A (2019) Recent advances in nano-photocatalysts for organic synthesis. Arab J Chem 12(8):4550–4578

    Article  CAS  Google Scholar 

  208. Zivic N et al (2016) Photocatalysts in polymerization reactions. ChemCatChem 8(9):1617–1631

    Article  CAS  Google Scholar 

  209. Turro NJ, Ramamurthy V, Ramamurthy V, Scaiano JC (2009) Principles of molecular photochemistry: an introduction. University science books

  210. Jablonski A (1933) Efficiency of anti-Stokes fluorescence in dyes. Nature 131(3319):839–840

    Article  CAS  Google Scholar 

  211. Micic OI, Rajh T, Nedeljkovic JM, Comor MI (1993) Enhanced redox chemistry in quantized semiconductor colloids. Isr J Chem 33(1):59–65

    Article  CAS  Google Scholar 

  212. Poole CP Jr, Owens FJ (2003) Introduction to nanotechnology. John Wiley & Sons

  213. Hoffman AJ, Mills G, Yee H, Hoffmann MR (1992) Q-sized cadmium sulfide: synthesis, characterization, and efficiency of photoinitiation of polymerization of several vinylic monomers. J Phys Chem 96(13):5546–5552

    Article  CAS  Google Scholar 

  214. Kumar SG, Devi LG (2011) Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J Phys Chem A 115(46):13211–13241

    Article  CAS  Google Scholar 

  215. Cheng C-C, Huang J-J, Lee A-W, Huang S-Y, Huang C-Y, Lai J-Y (2019) Highly effective photocontrollable drug delivery systems based on ultrasensitive light-responsive self-assembled polymeric micelles: an in vitro therapeutic evaluation. ACS Appl Bio Mater 2(5):2162–2170

    Article  CAS  Google Scholar 

  216. Iafisco M, Alogna A, Miragoli M, Catalucci D (Aug. 2019) Cardiovascular nanomedicine: the route ahead. Nanomedicine 14(18):2391–2394. doi: https://doi.org/10.2217/nnm-2019-0228

  217. Deng Y et al “Application of the Nano-Drug Delivery System in Treatment of Cardiovascular Diseases,” Frontiers in Bioengineering and Biotechnology, vol. 7. p. 489, 2020, [Online]. Available: https://www.frontiersin.org/article/https://doi.org/10.3389/fbioe.2019.00489

  218. Park JH, Dehaini D, Zhou J, Holay M, Fang RH, Zhang L (2020) Biomimetic nanoparticle technology for cardiovascular disease detection and treatment. Nanoscale Horizons 5(1):25–42. doi: https://doi.org/10.1039/C9NH00291J

    Article  CAS  Google Scholar 

  219. Van Camp G (Dec. 2014) Cardiovascular disease prevention. Acta Clin Belg 69(6):407–411. doi: https://doi.org/10.1179/2295333714Y.0000000069

  220. McCarthy JR “Nanomedicine and Cardiovascular Disease,”Current Cardiovascular Imaging Reports, vol. 3, no. 1. pp.42–49, doi: https://doi.org/10.1007/s12410-009-9002-3

  221. Yan C, Quan X-J, Feng Y-M (2019) Nanomedicine for Gene Delivery for the Treatment of Cardiovascular Diseases. ” Curr Gene Ther 19(1):20–30. doi: https://doi.org/10.2174/1566523218666181003125308

    Article  CAS  Google Scholar 

  222. Afsharzadeh M, Hashemi M, Mokhtarzadeh A, Abnous K, Ramezani M (2018) “Recent advances in co-delivery systems based on polymeric nanoparticle for cancer treatment,” Artif. Cells, Nanomedicine, Biotechnol., vol. 46, no. 6, pp. 1095–1110, Aug. doi: https://doi.org/10.1080/21691401.2017.1376675

  223. Chang M-Y et al (2013) Functionalized nanoparticles provide early cardioprotection after acute myocardial infarction. J Control Release 170(2):287–294. doi: https://doi.org/10.1016/j.jconrel.2013.04.022

    Article  CAS  Google Scholar 

  224. Charoenphol P, Mocherla S, Bouis D, Namdee K, Pinsky DJ, Eniola-Adefeso O (Aug. 2011) Targeting therapeutics to the vascular wall in atherosclerosis–carrier size matters. ” Atherosclerosis 217(2):364–370. doi: https://doi.org/10.1016/j.atherosclerosis.2011.04.016

  225. Mir M et al (Aug. 2017) “Nanotechnology: from In Vivo Imaging System to Controlled Drug Delivery. ” Nanoscale Res Lett 12(1):500. doi: https://doi.org/10.1186/s11671-017-2249-8

  226. Dou Y et al (Aug. 2016) Sustained delivery by a cyclodextrin material-based nanocarrier potentiates antiatherosclerotic activity of rapamycin via selectively inhibiting mTORC1 in mice. ” J Control Release 235:48–62. doi: https://doi.org/10.1016/j.jconrel.2016.05.049

  227. Dvir T et al (2011) “Nanoparticles targeting the infarcted heart.,” Nano Lett., vol. 11, no. 10, pp. 4411–4414, doi: https://doi.org/10.1021/nl2025882

  228. Elsabahy M, Wooley KL (2012) Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 41(7):2545–2561. doi: https://doi.org/10.1039/C2CS15327K

    Article  CAS  Google Scholar 

  229. Flaht-Zabost A et al (2014) “Cardiac mouse lymphatics: developmental and anatomical update.,” Anat. Rec. (Hoboken)., vol. 297, no. 6, pp. 1115–1130, doi: https://doi.org/10.1002/ar.22912

  230. Galperin A, Margel D, Baniel J, Dank G, Biton H, Margel S (2007) “Radiopaque iodinated polymeric nanoparticles for X-ray imaging applications.,” Biomaterials, vol. 28, no. 30, pp. 4461–4468, Oct. doi: https://doi.org/10.1016/j.biomaterials.2007.06.032

  231. Gaurav C, Saurav B, Goutam R, Goyal AK (2015) Nano-Systems for Advanced Therapeutics and Diagnosis of Atherosclerosis. ” Curr Pharm Des 21(30):4498–4508. doi: https://doi.org/10.2174/1381612821666150917094215

    Article  CAS  Google Scholar 

  232. Jain A, Jain SK (Feb. 2018) Stimuli-responsive Smart Liposomes in Cancer Targeting. ” Curr Drug Targets 19(3):259–270. doi: https://doi.org/10.2174/1389450117666160208144143

  233. Lee GY et al (2015) “Hyaluronic acid nanoparticles for active targeting atherosclerosis.,” Biomaterials, vol. 53, pp. 341–348, doi: https://doi.org/10.1016/j.biomaterials.2015.02.089

  234. Lee Y, Pai SB, Bellamkonda RV, Thompson DH, Singh J (2018) “Cerivastatin Nanoliposome as a Potential Disease Modifying Approach for the Treatment of Pulmonary Arterial Hypertension.,” J. Pharmacol. Exp. Ther., vol. 366, no. 1, pp. 66–74, Jul. doi: https://doi.org/10.1124/jpet.118.247643

  235. Ma S et al (Mar. 2016) E-selectin-targeting delivery of microRNAs by microparticles ameliorates endothelial inflammation and atherosclerosis. ” Sci Rep 6:22910. doi: https://doi.org/10.1038/srep22910

  236. Maeda H, Nakamura H, Fang J (2013) The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 65(1):71–79. doi: https://doi.org/10.1016/j.addr.2012.10.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Amrita Vishwa Vidyapeetham for providing the funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kaushik Pal or Saritha Appukuttan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajan, R., Pal, K., Jayadev, D. et al. Polymeric Nanoparticles in Hybrid Catalytic Processing and Drug Delivery System. Top Catal 65, 1860–1884 (2022). https://doi.org/10.1007/s11244-022-01697-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-022-01697-0

Keywords

Navigation