Skip to main content
Log in

Mechanistic Investigation of Methanol Oxidation on Au/TiO2: A Combined DRIFT and DFT Study

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The mechanism of methanol oxidation on a Au/TiO2 catalyst was investigated by combining in situ modulation-excitation diffuse reflectance infrared spectroscopy (MES-DRIFT) with periodic density functional theory (DFT). Adsorbed reaction intermediates and spectators were identified. Methanol dissociatively adsorbs as a methoxy (\(\mathrm{CH}_3\mathrm{O}\)) species on the titania surface, and stepwise oxidizes to formate, carboxyl and CO, carbonates and CO2 at the Au/\(\mathrm{TiO}_{2}\) interface. The role of the metal-support interface is clearly observed experimental and theoretically according to a metal–Au-assisted Mars van Krevelen mechanism. Energy barriers were calculated for each elementary step, and the methoxy oxidation was found to be the rate-limiting step in the proposed scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kamal MS, Razzak SA, Hossain MM (2016) Catalytic oxidation of volatile organic compounds (VOCs). A review. Atmos Environ 140:117–134

    Article  CAS  Google Scholar 

  2. Pilasombat R, Daly H, Goguet A, Breen J, Burch R, Hardacre C, Thompsett D (2012) Investigation of the effect of the preparation method on the activity and stability of \({\rm Au/CeZrO}_{4}\) catalysts for the low temperature water gas shift reaction. Catal Today 180(1):131–138

    Article  CAS  Google Scholar 

  3. Scirè S, Liotta LF (2012) Supported gold catalysts for the total oxidation of volatile organic compounds. Appl Catal B Environ 125:222–246

    Article  Google Scholar 

  4. Scirè S, Riccobene PM, Crisafulli C (2010) Ceria supported group IB metal catalysts for the combustion of volatile organic compounds and the preferential oxidation of CO. Appl Catal B Environ 101(1–2):109–117

    Article  Google Scholar 

  5. Delannoy L, Fajerwerg K, Lakshmanan P, Potvin C, Methivier C, Louis C (2010) Supported gold catalysts for the decomposition of VOC: total oxidation of propene in low concentration as model reaction. Appl Catal B Environ 94(1–2):117–124

    Article  CAS  Google Scholar 

  6. Petrova P, Tabakova T, Munteanu G, Zanella R, Tsvetkov M, Ilieva L (2013) Gold catalysts on Co-doped ceria for complete benzene oxidation: relationship between reducibility and catalytic activity. Catal Commun 36:84–88

    Article  CAS  Google Scholar 

  7. Green IX, Tang W, McEntee M, Neurock M, Yates Jr JT (2012) Inhibition at perimeter sites of \({\rm Au/TiO}_{2}\) oxidation catalyst by reactant oxygen. J Am Chem Soc 134(30):12717–12723

  8. Green IX, Tang W, Neurock M, Yates JT (2011) Spectroscopic observation of dual catalytic sites during oxidation of CO on a \({\rm Au/TiO}_{2}\) catalyst. Science 333(6043):736–739

    Article  CAS  Google Scholar 

  9. Sun K, Kohyama M, Tanaka S, Takeda S (2017) Reaction mechanism of the low-temperature water–gas shift reaction on \({\rm Au/TiO}_{2}\) catalysts. J Phys Chem C 121(22):12178–12187

  10. Wang YG, Yoon Y, Glezakou VA, Li J, Rousseau R (2013) The role of reducible oxide–metal cluster charge transfer in catalytic processes: new insights on the catalytic mechanism of CO oxidation on \({\rm Au/TiO}_{2}\) from ab initio molecular dynamics. J Am Chem Soc 135(29):10673–10683

  11. Schlexer P, Widmann D, Behm RJ, Pacchioni G (2018) Co oxidation on a Au/\({\rm TiO}_{2}\) nanoparticle catalyst via the Au-assisted Mars-van Krevelen mechanism. ACS Catal 8(7):6513–6525

    Article  CAS  Google Scholar 

  12. Tosoni S, Pacchioni G (2019) Oxide-supported gold clusters and nanoparticles in catalysis: a computational chemistry perspective. ChemCatChem 11(1):73–89

    Article  CAS  Google Scholar 

  13. Bazin P, Thomas S, Marie O, Daturi M (2012) New insights into the methanol oxidation mechanism over \({\rm Au/CeO}_{2}\) catalyst through complementary kinetic and FTIR operando SSITKA approaches. Catal Today 182(1):3–11

    Article  CAS  Google Scholar 

  14. Rousseau S, Marie O, Bazin P, Daturi M, Verdier S, Harlé V (2010) Investigation of methanol oxidation over Au/catalysts using operando IR spectroscopy: determination of the active sites, intermediate/spectator species, and reaction mechanism. J Am Chem Soc 132(31):10832–10841

  15. Kähler K, Holz MC, Rohe M, van Veen AC, Muhler M (2013) Methanol oxidation as probe reaction for active sites in Au/ZnO and \({\rm Au/TiO}_{2}\) catalysts. J Catal 299:162–170

    Article  Google Scholar 

  16. Nuhu A, Soares J, Gonzalez-Herrera M, Watts A, Hussein G, Bowker M (2007) Methanol oxidation on \({\rm Au/TiO}_{2}\) catalysts. Top Catal 44:293–297

    Article  CAS  Google Scholar 

  17. Farnesi Camellone M, Marx D (2014) Nature and role of activated molecular oxygen species at the gold/titania interface in the selective oxidation of alcohols. J Phys Chem C 118(36):20989–21000

  18. Farnesi Camellone M, Zhao J, Jin L, Wang Y, Muhler M, Marx D (2013) Molecular understanding of reactivity and selectivity for methanol oxidation at the \({\rm Au/TiO}_{2}\) interface. Angew Chem Int Ed 52(22):5780–5784

    Article  Google Scholar 

  19. Zanella R, Louis C (2005) Influence of the conditions of thermal treatments and of storage on the size of the gold particles in \({\rm Au/TiO}_{2}\) samples. Catal Today 107:768–777

    Article  Google Scholar 

  20. Aguirre A, Collins S (2013) Selective detection of reaction intermediates using concentration-modulation excitation DRIFT spectroscopy. Catal Today 205:34–40

    Article  CAS  Google Scholar 

  21. Baurecht D, Fringeli U (2001) Quantitative modulated excitation fourier transform infrared spectroscopy. Rev Sci Instrum 72(10):3782–3792

    Article  CAS  Google Scholar 

  22. Enkovaara JE, Rostgaard C, Mortensen J et al (2010) Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J Phys Condens Matter 22(25):253202

  23. Mortensen JJ, Hansen LB, Jacobsen KW (2005) Real-space grid implementation of the projector augmented wave method. Phys Rev B 71(3):035109

  24. Larsen A, Mortensen J, Blomqvist J, Castelli I, Christensen R, Dułak M, Friis J, Groves M, Hammer B, Hargus C, Hermes E, Jennings P, Jensen P, Kermode J, Kitchin J, Kolsbjerg EL, Kubal J, Kaasbjerg K, Lysgaard S, Maronsson J, Maxson T, Olsen T, Pastewka L, Peterson A, Rostgaard C, Schiøtz J, Schütt O, Strange M, Thygesen K, Vegge T, Vilhelmsen L, Walter M, Zeng Z, Jacobsen K (2017) The atomic simulation environmentm—a Python library for working with atoms. J Phys Condens Matter 29(27):273002

  25. Klimeš J, Bowler D, Michaelides A (2010) Chemical accuracy for the van der waals density functional. J Phys Condens Matter 22(022):201

    Google Scholar 

  26. Ma X, Genest A, Spanu L, Rösch N (2015) Structures and vibrational frequencies of co adsorbed on transition metals from calculations using the vdw-df2 functional. Comput Theoret Chem 1069:147

    Article  CAS  Google Scholar 

  27. Henkelman G, Uberuaga BP, Jónsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113(22):9901–9904

    Article  CAS  Google Scholar 

  28. Henkelman G, Jónsson H (2000) Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys 113(22):9978–9985

    Article  CAS  Google Scholar 

  29. Scirè S, Minico S, Crisafulli C, Satriano C, Pistone A (2003) Catalytic combustion of volatile organic compounds on gold/cerium oxide catalysts. Appl Catal B Environ 40(1):43–49

    Article  Google Scholar 

  30. Calzada LA, Collins SE, Han CW, Ortalan V, Zanella R (2017) Synergetic effect of bimetallic \({{\rm Au-Ru/TiO}_{2}}\) catalysts for complete oxidation of methanol. Appl Catal B Environ 207:79–92

    Article  CAS  Google Scholar 

  31. Derouault J, Le Calve J, Forel M (1972) Discussion des vibrations de valence \(\nu ({\rm CH}_{3}\)) and \(\nu ({{\rm CD}_{3}})\) des groupes \({{\rm OCH}_{3}}\) and \({{\rm OCD}_{3}}\): influence de la formation d’une liaison de coordination entre l’oxygéne and les halogénures d’aluminium ou le trifluorure de bore. Spectrochim Acta Part A Mol Spectrosc 28(2):359–371

    Article  CAS  Google Scholar 

  32. Lavalley J, Sheppard N (1972) Anharmonicity of \({\rm CH}_{3}\) deformation vibrations and fermi resonance between the symmetrical \({\rm CH}_{3}\) stretching mode and overtones of \({\rm CH}_{3}\) deformation vibrations. Spectrochim Acta Part A Mol Spectrosc 28(11):2091–2101

    Article  CAS  Google Scholar 

  33. Bellamy LJ (1968) Advances in infrared group frequencies. Methuen & Co, London

  34. Collins S, Briand L, Gambaro L, Baltanas M, Bonivardi A (2008) Adsorption and decomposition of methanol on gallium oxide polymorphs. J Phys Chem C 112(38):14988–15000

  35. Lavalley J (1996) Infrared spectrometric studies of the surface basicity of metal oxides and zeolites using adsorbed probe molecules. Catal Today 27(3):377–401

    Article  CAS  Google Scholar 

  36. Burcham LJ, Badlani M, Wachs IE (2001) The origin of the ligand effect in metal oxide catalysts: novel fixed-bed in situ infrared and kinetic studies during methanol oxidation. J Catal 203(1):104–121

    Article  CAS  Google Scholar 

  37. Mattsson A, Österlund L (2017) Co-adsorption of oxygen and formic acid on rutile \({\rm TiO}_{2}\) (110) studied by infrared reflection-absorption spectroscopy. Surf Sci 663:47–55

    Article  CAS  Google Scholar 

  38. Busca G, Lorenzelli V (1982) Infrared spectroscopic identification of species arising from reactive adsorption of carbon oxides on metal oxide surfaces. Mater Chem 7(1):89–126

    Article  CAS  Google Scholar 

  39. Zhao J, Yang J, Petek H (2009) Theoretical study of the molecular and electronic structure of methanol on a \({\rm TiO}_{2}\) (110) surface. Phys Rev B 80(23):235,416

  40. Sanchez De Armas R, Oviedo J, San Miguel M, Sanz J (2007) Methanol adsorption and dissociation on \({\rm TiO}_{2}\) (110) from first principles calculations. J Phys Chem C 111(27):10023–10028

  41. Du Y, Deskins NA, Zhang Z, Dohnálek Z, Dupuis M, Lyubinetsky I (2009) Imaging consecutive steps of \({\rm O}_{2}\) reaction with hydroxylated \({\rm TiO}_{2}\) (110): identification of \({{\rm HO}_{2}}\) and terminal OH intermediates. J Phys Chem C 113(2):666–671

    Article  CAS  Google Scholar 

  42. Henderson MA, Epling WS, Peden C, Perkins CL (2003) Insights into photoexcited electron scavenging processes on \({\rm TiO}_{2}\) obtained from studies of the reaction of \({\rm O}_{2}\) with OH groups adsorbed at electronic defects on \({\rm TiO}_{2}\) (110). J Phys Chem B 107(2):534–545

    Article  CAS  Google Scholar 

  43. Tilocca A, Di Valentin C, Selloni A (2005) \({\rm O}_{2}\) interaction and reactivity on a model hydroxylated rutile (110) surface. J Phys Chem B 109(44):20963–20967

  44. Li C, Domen K, Maruya KI, Onishi T (1990) Oxygen exchange reactions over cerium oxide: an FT-IR study. J Catal 123(2):436–442

    Article  CAS  Google Scholar 

  45. Binet C, Daturi M, Lavalley JC (1999) IR study of polycrystalline ceria properties in oxidised and reduced states. Catal Today 50(2):207–225

    Article  CAS  Google Scholar 

  46. Collins SE, Baltanas MA, Bonivardi AL (2004) An infrared study of the intermediates of methanol synthesis from carbon dioxide over Pd/β-\({\rm Ga}_{2}{\rm O}_{3}.\) J Catal 226(2):410–421

    Article  CAS  Google Scholar 

  47. Chen Y, Wang H, Burch R, Hardacre C, Hu P (2011) New insight into mechanisms in water-gas-shift reaction on \({\rm Au/CeO}_{2}\) (111): a density functional theory and kinetic study. Faraday Discuss 152:121–133

    Article  CAS  Google Scholar 

  48. Gong XQ, Hu P, Raval R (2003) The catalytic role of water in co oxidation. J Chem Phys 119(12):6324–6334

    Article  CAS  Google Scholar 

  49. Liu ZP, Jenkins SJ, King DA (2005) Origin and activity of oxidized gold in water-gas-shift catalysis. Phys Rev Lett 94(19):196102

  50. Mudiyanselage K, Senanayake SD, Feria L, Kundu S, Baber AE, Graciani J, Vidal AB, Agnoli S, Evans J, Chang R et al (2013) Importance of the metal-oxide interface in catalysis: In situ studies of the water-gas shift reaction by ambient-pressure X-ray photoelectron spectroscopy. Angew Chem Int Ed 52(19):5101–5105

    Article  CAS  Google Scholar 

  51. Vecchietti J, Bonivardi A, Xu W, Stacchiola D, Delgado JJ, Calatayud M, Collins SE (2014) Understanding the role of oxygen vacancies in the water gas shift reaction on ceria-supported platinum catalysts. ACS catal 4(6):2088–2096

    Article  CAS  Google Scholar 

  52. Yin P, Yu J, Wang L, Zhang J, Jie Y, Chen LF, Zhao XJ, Feng HS, Yang YS, Xu M et al (2021) Water-gas-shift reaction on \({{\rm Au}}/{{\rm TiO}}_{2-{\rm x}}\) catalysts with various \({\rm TiO}_{2}\) crystalline phases: a theoretical and experimental study. J Phys Chem C 125(37):20360–20372

  53. Wang YG, Cantu DC, Lee MS, Li J, Glezakou VA, Rousseau R (2016) CO oxidation on \({\rm Au/TiO}_{2}\): condition-dependent active sites and mechanistic pathways. J Am Chem Soc 138(33):10467–10476

  54. Chrétien S, Metiu H (2008) Enhanced adsorption energy of \({\rm Au}_{1}\) and \({\rm O}_{2}\) on the stoichiometric \({\rm TiO}_{2}\) (110) surface by coadsorption with other molecules. J Chem Phys 128(4):044714

  55. Koga H, Tada K, Okumura M (2015a) DFT study of CO oxidation catalyzed by \({\rm Au/TiO}_{2}\): Activity of small clusters. e-Journal of Surface Science and Nanotechnology 13:129–134

  56. Koga H, Tada K, Okumura M (2015b) Density functional theory study of active oxygen at the perimeter of \({\rm Au/TiO}_{2}\) catalysts. J Phys Chem C 119(46):25907–25916

Download references

Acknowledgements

Financial support by CONICET and Universidad Nacional del Litoral is gratefully acknowledged. G.D.B, N.C., E.C. and P.Q. thanks PICT-2017-1342 and PICT-2019-03392 for support. S.C. acknowledges PICT-2018-01332. The authors also thank the support given by Santa Fe Science Technology and Innovation Agency (ASACTEI, Grant No. 00010-18-2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Quaino.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 7214 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belletti, G.D., Colombo, E., Cabana, N. et al. Mechanistic Investigation of Methanol Oxidation on Au/TiO2: A Combined DRIFT and DFT Study. Top Catal 65, 915–925 (2022). https://doi.org/10.1007/s11244-022-01620-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-022-01620-7

Keywords

Navigation