Skip to main content
Log in

Non-enzymatic Catalytic Oxidation of Glucose and Dual Mode Sensing by Fluorescence/Electrochemical Methods Using MO–GO Composites (MO = ZnO, CuO, NiO and Co3O4)

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Nano semiconductors have been recently explored for various electrochemical and optical sensors for remote and non-invasive measurement of biomolecules at lower concentrations. Sensitivity of detection in any technique is influenced by the sensing material employed for detection. Till date, there are no reports on the impact of semiconductor material type on the sensitivity of various glucose detection techniques. In light of these, present study aims to develop nano metal oxide and graphene–metal oxide nanocomposite based electrochemical and optical biosensors for glucose detection and demonstrate the significance of material selection for the two glucose detection techniques. Graphene oxide (GO) and metal oxide (MO:ZnO, CuO, NiO and Co3O4) nanoparticles were synthesized by modified Hummer’s method and solution combustion methods respectively, while Graphene–metal oxide nanocomposites (GO–MO) were synthesized by facile hydrothermal method. Morphology and structures of the prepared composite materials were characterised by Raman spectroscopy, XRD and SEM. Glucose sensing was analyzed using Fluorescence (FL) spectroscopy and cyclic voltammetry (CV). Fluorescence emission intensity increased linearly with increase in concentration of glucose for MO nanoparticles, while in case of GO–MO nanocomposites, the emission spectra showed insignificant variation. In case of cyclic voltammetry (CV) measurements, GO–MO nanocomposite modified electrode exhibited excellent glucose sensing compared to MO nanoparticles modified electrode. While MO nanoparticles as glucose sensors were found to be ideal for PL technique, GO–MO nanocomposites were ideal sensing materials for CV technique. The present study thus demonstrates the importance of material selection for specific glucose detection techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rocchitta G, Spanu A, Babudieri S, Latte G, Madeddu G, Galleri G, Nuvoli S, Bagella P, Demartis MI, Fiore V, Manetti R, Serra PA (2016) Enzyme biosensors for biomedical applications: strategies for safeguarding analytical performances in biological fluids. Sensors 16(6):780

    Article  Google Scholar 

  2. Hassan MH, Vyas C, Grieve B, Bartolo P (2021) Recent advances in enzymatic and non-enzymatic electrochemical glucose sensing. Sensors 21:4672

    Article  CAS  Google Scholar 

  3. Venkata Ratnam K, Manjunatha H, Janardan S, Chandra Babu Naidu K, Ramesh S (2020) Nonenzymatic electrochemical sensor based on metal oxide, MO (M= Cu, Ni, Zn, and Fe) nanomaterials for neurotransmitters: an abridged review. Sens Int 1:100047

    Article  Google Scholar 

  4. Vinayak A, Santosh S, Santosh N, Jagadeesha AH (2021) A facile synthesis of Cr doped WO3 nanostructures, study of their current-voltage, power dissipation and impedance properties of thin films. J Nano Res 67(1):33–42. https://doi.org/10.4028/www.scientific.net/JNanoR.67.33

    Article  Google Scholar 

  5. Vinayak A, Basappa Y, Debdas B, Adarsha G (2021) Dielectric properties of P3BT doped ZrY2O3/CoZrY2O3 nanostructures for low cost optoelectronics applications. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-021-00348-7

    Article  Google Scholar 

  6. Vinayak A, Debdas B, Jagadeesha AH (2021) Synthesis, impedance and current-voltage spectroscopic characterization of novel gadolinium titanate nano structures. Adv Mater 12(60):21061638. https://doi.org/10.5185/amlett.2021.061638

    Article  CAS  Google Scholar 

  7. Vinayak A, Santosh N, Adarsha G (2021) A facile synthesis of gadolinium titanate (GdTiO3) nanomaterial and its effect in enhanced current-voltage characteristics of thin films. Techno-Societal. https://doi.org/10.1007/978-3-030-69925-3_7

    Article  Google Scholar 

  8. Vinayak A, Jagadeesha AH, Santosh N, Revaigh MG (2020) Synthesis, characterization of Cr doped TeO2 nanostructures and its application as EGFET pH sensor. Electroanalysis 32(1):1–13. https://doi.org/10.1002/elan.202060329

    Article  CAS  Google Scholar 

  9. Santosh N, Anusha S, Vinayak A, Basappa Y (2020) Semiconductor current-voltage characteristics of some novel perovskite ionic nanocomposites of Sr0.5, Cu0.4, Y0.1 and Sr0.5, Mn0.5 and their electronic sensor applications. AIP Conf Proc 2274(1):020007. https://doi.org/10.1063/5.0022453

    Article  CAS  Google Scholar 

  10. Pohanka M, Leuchter J (2017) Biosensors based on semiconductors, a review. Int J Electrochem Sci 12:6611–6621

    Article  CAS  Google Scholar 

  11. Martín-Palma RJ, Manso M, Torres-Costa V (2009) Optical biosensors based on semiconductor nanostructures. Sensors 9(7):5149–5172

    Article  Google Scholar 

  12. Huang X, Qi X, Boey F, Zhang H (2012) Graphene-based composites. Chem Soc Rev 41(2):666–686

    Article  CAS  Google Scholar 

  13. Liu X, Aizen R, Freeman R, Yehezkeli O, Willner I (2012) Multiplexed aptasensors and amplified DNA sensors using functionalized graphene oxide: application for logic gate operations. ACS Nano 6(4):3553–3563

    Article  CAS  Google Scholar 

  14. Xu X, Huang J, Li J, Yan J, Qin J, Li Z (2011) A graphene oxide-based AIE biosensor with high selectivity toward bovine serum albumin. Chem Commun 47(45):12385–12387

    Article  CAS  Google Scholar 

  15. Palanisamy S, Chen SM, Sarawathi R (2012) A novel nonenzymatic hydrogen peroxide sensor based on reduced graphene oxide/ZnO composite modified electrode. Sens Actuators B 166:372–377

    Article  Google Scholar 

  16. You JM, Kim D, Kim SK, Kim MS, Han HS, Jeon S (2013) Novel determination of hydrogen peroxide by electrochemically reduced graphene oxide grafted with aminothiophenol–Pd nanoparticles. Sens Actuators B 178:450–457

    Article  CAS  Google Scholar 

  17. Yang YJ, Li W (2014) CTAB functionalized graphene oxide/multiwalled carbon nanotube composite modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite. Biosens Bioelectron 56:300–306

    Article  CAS  Google Scholar 

  18. Song J, Xu L, Zhou C, Xing R, Dai Q, Liu D, Song H (2013) Synthesis of graphene oxide based CuO nanoparticles composite electrode for highly enhanced nonenzymatic glucose detection. ACS Appl Mater Interfaces 5(24):12928–12934

    Article  CAS  Google Scholar 

  19. Kannan P, Maiyalagan T, Marsili E, Ghosh S, Guo L, Huang Y, Rather JA, Thiruppathi D, Niedziolka-Jönsson J, Jönsson-Niedziolka M (2017) Highly active 3-dimensional cobalt oxide nanostructures on the flexible carbon substrates for enzymeless glucose sensing. Analyst 142:4299–4307

    Article  CAS  Google Scholar 

  20. Si P, Dong XC, Chen P, Kim DH (2013) A hierarchically structured composite of Mn3O4/3D graphene foam for flexible nonenzymatic biosensors. J Mater Chem B 1:110–115

    Article  CAS  Google Scholar 

  21. Yuan B, Xu C, Deng D, Xing Y, Liu L, Pang H, Zhang D (2013) Graphene oxide/nickel oxide modified glassy carbon electrode for supercapacitor and nonenzymatic glucose sensor. Electrochim Acta 88:708–712

    Article  CAS  Google Scholar 

  22. Wu M, Meng S, Wang Q, Si W, Huang W, Dong X (2015) Nickel-Cobalt Oxide decorated three-dimensional graphene as an enzyme mimic for glucose and calcium detection. ACS Appl Mater Interfaces 7(38):21089–21094

    Article  CAS  Google Scholar 

  23. Ganesh P-S, Shimoga G, Kim S-Y, Lee S-H, Kaya S, Salim R (2021) Quantum chemical studies and electrochemical investigations of pyrogallol red modified carbon paste electrode fabrication for sensor application. Microchem J 167:106260. https://doi.org/10.1016/j.microc.2021.106260

    Article  CAS  Google Scholar 

  24. Ganesh PS, Kumara Swamy BE, Fayemi OE, Sherif E-SM, Ebenso EE (2018) Poly(crystal violet) modified pencil graphite electrode sensor for the electroanalysis of catechol in the presence of hydroquinone. Sens Bio-sens Res 20:47–54. https://doi.org/10.1016/j.sbsr.2018.08.001

    Article  Google Scholar 

  25. Rajaji U, Ganesh P-S, Chen S-M, Govindasamy M, Kim S-Y, Alshgari RA, Shimoga G (2021) Deep eutectic solvents synthesis of perovskite type cerium aluminate embedded carbon nitride catalyst: high-sensitive amperometric platform for sensing of glucose in biological fluids. J Ind Eng Chem 102:312–320. https://doi.org/10.1016/j.jiec.2021.07.015

    Article  CAS  Google Scholar 

  26. Teradale AB, Lamani SD, Ganesh PS, Kumara Swamy BE, Das SN (2017) CTAB immobilized carbon paste electrode for the determination of mesalazine: a cyclic voltammetric method. Sens Bio-sens Res 15:53–59. https://doi.org/10.1016/j.sbsr.2017.08.001

    Article  Google Scholar 

  27. Ganesh P-S, Kim S-Y, Kaya S, Salim R, Shimoga G, Lee S-H (2021) Quantum chemical studies and electrochemical investigations of polymerized brilliant blue-modified carbon paste electrode for in vitro sensing of pharmaceutical samples. Chemosensors 9:135. https://doi.org/10.3390/chemosensors9060135

    Article  CAS  Google Scholar 

  28. Jayaprakash GK, Kumara Swamy BE, Rajendrachari S, Sharma SC, Flores-Moreno R (2021) Dual descriptor analysis of cetylpyridinium modified carbon paste electrodes for ascorbic acid sensing applications. J Mol Liq 334:116348. https://doi.org/10.1016/j.molliq.2021.116348

    Article  CAS  Google Scholar 

  29. Kudur Jayaprakash G, Swamy BEK, Sánchez JPM, Li X, Sharma SC, Lee S-L (2020) Electrochemical and quantum chemical studies of cetylpyridinium bromide modified carbon electrode interface for sensor applications. J Mol Liq 315:113719. https://doi.org/10.1016/j.molliq.2020.113719

    Article  CAS  Google Scholar 

  30. Kudur Jayaprakash G, Kumara Swamy BE, Sharma SC, Santoyo-Flores JJ (2020) Analyzing electron transfer properties of ferrocene in gasoline by cyclic voltammetry and theoretical methods. Microchem J 158:105116. https://doi.org/10.1016/j.microc.2020.105116

    Article  CAS  Google Scholar 

  31. Jayaprakash GK, Swamy BEK, Ramírez HNG, Ekanthappa MT, Flores-Moreno R (2018) Quantum chemical and electrochemical studies of lysine modified carbon paste electrode surfaces for sensing dopamine. New J Chem 42:4501–4506. https://doi.org/10.1039/C7NJ04998F

    Article  CAS  Google Scholar 

  32. Charithra MM, Manjunatha JG (2020) Enhanced voltammetric detection of paracetamol by using carbon nanotube modified electrode as an electrochemical sensor. J Electrochem Sci Eng 10:29–40. https://doi.org/10.5599/jese.717

    Article  CAS  Google Scholar 

  33. Tigari G, Manjunatha JG (2020) A surfactant enhanced novel pencil graphite and carbon nanotube composite paste material as an effective electrochemical sensor for determination of riboflavin. J Sci Adv Mater Devices 5:56–64. https://doi.org/10.1016/j.jsamd.2019.11.001

    Article  Google Scholar 

  34. Manjunathaa JG, Deraman M, Basri NH, Talib IA (2014) Selective detection of dopamine in the presence of uric acid using polymerized phthalo blue film modified carbon paste electrode. Adv Mater Res 895:447–451. https://doi.org/10.4028/www.scientific.net/AMR.895.447

    Article  Google Scholar 

  35. Hareesha N, Manjunatha JG (2020) Elevated and rapid voltammetric sensing of riboflavin at poly(helianthin dye) blended carbon paste electrode with heterogeneous rate constant elucidation. J Iran Chem Soc 17:1507–1519. https://doi.org/10.1007/s13738-020-01876-4

    Article  CAS  Google Scholar 

  36. Hussain AM, Sarangi SN, Kesarwani JA, Sahu SN (2011) Au-nanocluster emission based glucose sensing. Biosens Bioelectron 29(1):60–65

    Article  CAS  Google Scholar 

  37. Sarangi SN, Nozaki S, Sahu SN (2015) ZnO nanorod-based non-enzymatic optical glucose biosensor. J Biomed Nanotechnol 11(6):988–996

    Article  CAS  Google Scholar 

  38. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339

    Article  CAS  Google Scholar 

  39. Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53(3):1126–1130

    Article  CAS  Google Scholar 

  40. Ferrari JC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Phys Rev Lett 97:187401

    Article  CAS  Google Scholar 

  41. Kaniyoor A, Sundara Ramaprabhu A (2012) Raman spectroscopic investigation of graphite oxide derived graphene. AIP Adv 2:032183

    Article  Google Scholar 

  42. Vinayak A, Basappa Y, Kalpana S (2021) Studies on crystal structure, morphology, optical and photoluminescence properties of flake-like Sb doped Y2O3 nanostructures. J Opt. https://doi.org/10.1007/s12596-021-00746-3

    Article  Google Scholar 

  43. Vinayak A, Basappa Y, Debdas B, Adarsha G (2021) Morphology, structural and photoluminescence properties of shaping triple semiconductor YxCoO:ZrO2 nanostructures. J Mater Sci. https://doi.org/10.1007/s10854-021-05845-2

    Article  Google Scholar 

  44. Vinayak A, Santosh N, Basappa Y, Nilophar S (2021) CNT/graphene- assisted flexible thin-film preparation for stretchable electronics and superconductors. Sensors for Stretchable Electronics in Nanotechnology. Taylor and Francis, London

    Google Scholar 

  45. Tzanov T, Costa SA, Gübitz GM, Cavaco-Paulo A (2002) Hydrogen peroxide generation with immobilized glucose oxidase for textile bleaching. J Biotechnol 93(1):87–94

    Article  CAS  Google Scholar 

  46. Si P, Huang Y, Wang T, Ma J (2013) Nanomaterials for electrochemical non-enzymatic glucose biosensors. RSC Adv 3:3487

    Article  CAS  Google Scholar 

  47. Esposito R, Ventura DB, De Nicola S, Altucci C, Velotta R, Mita DG, Lepore M (2011) Glucose sensing by time-resolved fluorescence of sol-gel immobilized glucose oxidase. Sensors 11(4):3483–3497

    Article  CAS  Google Scholar 

  48. Ibrahim H, Temerk Y (2015) Novel sensor for sensitive electrochemical determination of luteolin based on In2O3 nanoparticles modified glassy carbon paste electrode. Sens Actuators B 206:744–752

    Article  CAS  Google Scholar 

  49. Ibrahim M, Temerk Y, Ibrahim H, Kotb M (2015) Indium oxide nanoparticles modified carbon paste electrode for sensitive voltammetric determination of aromatase inhibitor formestane. Sens Actuators B 209:630–638

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Hari Krishna, M. N. Chandraprabha or C. Manjunatha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hari Krishna, R., Chandraprabha, M.N., Mamatha, G.M. et al. Non-enzymatic Catalytic Oxidation of Glucose and Dual Mode Sensing by Fluorescence/Electrochemical Methods Using MO–GO Composites (MO = ZnO, CuO, NiO and Co3O4). Top Catal (2022). https://doi.org/10.1007/s11244-022-01588-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11244-022-01588-4

Keywords

Navigation