Skip to main content
Log in

Numerical Modeling for the Photocatalytic Degradation of Methyl Orange from Aqueous Solution using Cellulose/Zinc Oxide Hybrid Aerogel: Comparison with Experimental Data

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In the present study, the photodegradation performance of Methyl Orange (MO) by CA/ZnO hybrid aerogel was successfully predicted through numerical and mathematical modeling. A mathematic model and numerical simulation were developed via MATLAB and COMSOL Multiphysics software based on finite difference method (FDM) and finite element method (FEM), respectively. The experimental data were derived from the experimental tests for the photocatalytic degradation efficiency of MO from an aqueous solution in order to validate the simulation. Results demonstrated that there is a good agreement between experimental data and predicted numerical values using COMSOL and mathematical simulation. Also, the effect of diffusion coefficient on the photodegradation efficiency of different dyes such Rhodamine B (RhB) and Methylene Blue (MB) were investigated using FEM method. The FEM numerical results showed that the photodegradation efficiency of MO, MB and RhB dyes, were 94.71%, 92.21% and 90.36%, respectively. The outcomes can be employed as predictive tools for planning the photodegradation efficiency of various pollutants.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Nguyen DD et al (2019) Micron-size white bamboo fibril-based silane cellulose aerogel: fabrication and oil absorbent characteristics. Materials 12(9):1407

    Article  CAS  PubMed Central  Google Scholar 

  2. Wang C et al (2017) Preparation of carbon nanotubes/graphene hybrid aerogel and its application for the adsorption of organic compounds. Carbon 118:765–771

    Article  CAS  Google Scholar 

  3. Yagub MT et al (2014) Dye and its removal from aqueous solution by adsorption: a review. Adv Coll Interface Sci 209:172–184

    Article  CAS  Google Scholar 

  4. Tan L et al (2019) Synergistic effect of adsorption and photocatalysis of 3D g-C3N4-agar hybrid aerogels. Appl Surf Sci 467:286–292

    Article  CAS  Google Scholar 

  5. Bolobajev J et al (2019) Metal-doped organic aerogels for photocatalytic degradation of trimethoprim. Chem Eng J 357:120–128

    Article  CAS  Google Scholar 

  6. Wan W et al (2018) Monolithic aerogel photocatalysts: a review. J Mater Chem A 6(3):754–775

    Article  CAS  Google Scholar 

  7. Chen S et al (2019) Robust three-dimensional g-C3N4@ cellulose aerogel enhanced by cross-linked polyester fibers for simultaneous removal of hexavalent chromium and antibiotics. Chem Eng J 359:119–129

    Article  CAS  Google Scholar 

  8. Chen Y et al (2020) Effective photocatalytic degradation and physical adsorption of methylene blue using cellulose/GO/TiO 2 hydrogels. RSC Adv 10(40):23936–23943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shah AA et al (2020) Facile synthesis of copper doped ZnO nanorods for the efficient photo degradation of methylene blue and methyl orange. Ceram Int 46(8):9997–10005

    Article  CAS  Google Scholar 

  10. Xie M et al (2020) Facile fabrication of ZnO nanorods modified with RGO for enhanced photodecomposition of dyes. Colloids Surf A 603:125247

    Article  CAS  Google Scholar 

  11. Islam MT et al (2020) Development of photocatalytic paint based on TiO2 and photopolymer resin for the degradation of organic pollutants in water. Sci Total Environ 704:135406

    Article  CAS  PubMed  Google Scholar 

  12. Ismael M (2020) Enhanced photocatalytic hydrogen production and degradation of organic pollutants from Fe (III) doped TiO2 nanoparticles. J Environ Chem Eng 8(2):103676

    Article  CAS  Google Scholar 

  13. Kim T et al (2019) Facile synthesis of SnO2 aerogel/reduced graphene oxide nanocomposites via in situ annealing for the photocatalytic degradation of methyl orange. Nanomaterials 9(3):358

    Article  CAS  PubMed Central  Google Scholar 

  14. Costantino F et al (2020) In situ formation of SnO2 nanoparticles on cellulose acetate fibrous membranes for the photocatalytic degradation of organic dyes. J Photochem Photobiol A 398:112599

    Article  CAS  Google Scholar 

  15. Cui L et al (2019) Electrospinning synthesis of SiO2-TiO2 hybrid nanofibers with large surface area and excellent photocatalytic activity. Appl Surf Sci 488:284–292

    Article  CAS  Google Scholar 

  16. Shan R et al (2020) Photocatalytic degradation of methyl orange by Ag/TiO2/biochar composite catalysts in aqueous solutions. Mater Sci Semiconduct Process 114:105088

    Article  CAS  Google Scholar 

  17. Suchithra P et al (2012) Mesoporous organic–inorganic hybrid aerogels through ultrasonic assisted sol–gel intercalation of silica–PEG in bentonite for effective removal of dyes, volatile organic pollutants and petroleum products from aqueous solution. Chem Eng J 200:589–600

    Article  CAS  Google Scholar 

  18. Dassanayake RS, Rajakaruna E, Abidi N (2018) Preparation of aerochitin-TiO2 composite for efficient photocatalytic degradation of methylene blue. J Appl Polym Sci 135(8):45908

    Article  CAS  Google Scholar 

  19. Li S et al (2018) Rapid photocatalytic degradation of pollutant from water under UV and sunlight via cellulose nanofiber aerogel wrapped by TiO2. J Nanomater 2018:1

    Google Scholar 

  20. Chen F et al (2018) 3D graphene aerogels-supported Ag and Ag@ Ag3PO4 heterostructure for the efficient adsorption-photocatalysis capture of different dye pollutants in water. Mater Res Bull 105:334–341

    Article  CAS  Google Scholar 

  21. Long L-Y, Weng Y-X, Wang Y-Z (2018) Cellulose aerogels: synthesis, applications, and prospects. Polymers 10(6):623

    Article  PubMed Central  CAS  Google Scholar 

  22. De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29(11):4609–4631

    Article  CAS  Google Scholar 

  23. Ge X et al (2018) High-strength and morphology-controlled aerogel based on carboxymethyl cellulose and graphene oxide. Carbohyd Polym 197:277–283

    Article  CAS  Google Scholar 

  24. Yang L et al (2020) Development of eco-friendly CO2-responsive cellulose nanofibril aerogels as “green” adsorbents for anionic dyes removal. J Hazard Mater 405:124194

    Article  PubMed  CAS  Google Scholar 

  25. Beh JH et al (2020) Cellulose nanofibril-based aerogel derived from sago pith waste and its application on methylene blue removal. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2020.05.227

    Article  PubMed  Google Scholar 

  26. Pereira ALS et al (2020) Bacterial cellulose aerogels: influence of oxidation and silanization on mechanical and absorption properties. Carbohydr Polym 250:116927

    Article  CAS  PubMed  Google Scholar 

  27. Simón-Herrero C et al (2020) Utilization and reusability of hydroxyethyl cellulose alumina based aerogels for the removal of spilled oil. Chemosphere 260:127568

    Article  PubMed  CAS  Google Scholar 

  28. Khan HW, Moniruzzaman M, Elsayed Nasef MM, Bustam MA (2020) Ionic liquid assisted cellulose aerogels for cleaning an oil spill. Mater. Today: Proceedings 31:217–220

    Google Scholar 

  29. Jiao Y, Wan C, Li J (2015) Room-temperature embedment of anatase titania nanoparticles into porous cellulose aerogels. Appl Phys A 120(1):341–347

    Article  CAS  Google Scholar 

  30. Tang C et al (2020) Shape recoverable and mechanically robust cellulose aerogel beads for efficient removal of copper ions. Chem Eng J 392:124821

    Article  CAS  Google Scholar 

  31. Xu J et al (2020) Cellulose nanofibril/polypyrrole hybrid aerogel supported form-stable phase change composites with superior energy storage density and improved photothermal conversion efficiency. Cellulose. https://doi.org/10.1007/s10570-020-03437-7

    Article  Google Scholar 

  32. Islam N et al (2017) High-frequency electrochemical capacitors based on plasma pyrolyzed bacterial cellulose aerogel for current ripple filtering and pulse energy storage. Nano Energy 40:107–114

    Article  CAS  Google Scholar 

  33. Han S et al (2020) Cellulose-conducting polymer aerogels for efficient solar steam generation. Adv Sustain Syst 4:2000004

    Article  CAS  Google Scholar 

  34. Li S et al (2020) Cellulose nanofibril-stabilized pickering emulsion and in situ polymerization lead to hybrid aerogel for high-efficiency solar steam generation. ACS Appl Polym Mater 2:11

    Article  Google Scholar 

  35. Feng J et al (2016) Silica cellulose hybrid aerogels for thermal and acoustic insulation applications. Colloids Surf A 506:298–305

    Article  CAS  Google Scholar 

  36. Corbel S et al (2014) Mass transfer measurements and modeling in a microchannel photocatalytic reactor. Chem Eng Res Des 92(4):657–662

    Article  CAS  Google Scholar 

  37. Corbel S, Donat F, Schneider R (2019) Kinetic study of photocatalytic degradation of Ifos famide in a microchannel and simulation. SDRP J Nanotechnol Mater Sci 2(1):75–82

    Google Scholar 

  38. Yusuf A, Palmisano G (2021) Three-dimensional CFD modelling of a photocatalytic parallel-channel microreactor. Chem Eng Sci 229:116051

    Article  CAS  Google Scholar 

  39. Yusuf A et al (2020) Modelling of a recirculating photocatalytic microreactor implementing mesoporous N-TiO2 modified with graphene. Chem Eng J 391:123574

    Article  CAS  Google Scholar 

  40. Hosseini H, Mousavi SM (2021) Bacterial cellulose/polyaniline nanocomposite aerogels as novel bioadsorbents for removal of hexavalent chromium: experimental and simulation study. J Clean Prod 278:123817

    Article  CAS  Google Scholar 

  41. Wang T et al (2013) Numerical investigation on CO2 photocatalytic reduction in optical fiber monolith reactor. Energy Convers Manag 65:299–307

    Article  CAS  Google Scholar 

  42. Rodrigues J et al (2020) Photocatalytic degradation using ZnO for the treatment of RB 19 and RB 21 dyes in industrial effluents and mathematical modeling of the process. Chem Eng Res Des 153:294–305

    Article  CAS  Google Scholar 

  43. Yang H, Sheikhi A, Van De Ven TG (2016) Reusable green aerogels from cross-linked hairy nanocrystalline cellulose and modified chitosan for dye removal. Langmuir 32(45):11771–11779

    Article  CAS  PubMed  Google Scholar 

  44. Moazezi N et al (2018) Modeling and experimental evaluation of Ni (II) and Pb (II) sorption from aqueous solutions using a polyaniline/CoFeC6N6 nanocomposite. J Chem Eng Data 63(3):741–750

    Article  CAS  Google Scholar 

  45. Shamey R, Zhao X (2014) Modelling, simulation and control of the dyeing process. Elsevier, Amsterdam

    Google Scholar 

  46. Nakhchi M, Hatami M, Rahmati M (2021) A numerical study on the effects of nanoparticles and stair fins on performance improvement of phase change thermal energy storages. Energy 215:119112

    Article  CAS  Google Scholar 

  47. Nakhchi M, Rahmati M (2021) Entropy generation of turbulent Cu–water nanofluid flows inside thermal systems equipped with transverse-cut twisted turbulators. J Therm Anal Calorim 143(3):2475–2484

    Article  CAS  Google Scholar 

  48. Nakhchi M, Esfahani J (2020) Numerical investigation of turbulent CuO–water nanofluid inside heat exchanger enhanced with double V-cut twisted tapes. J Therm Anal Calorim. https://doi.org/10.1007/s10973-020-09788-4

    Article  Google Scholar 

  49. Rahmani E, Rahmani M, Silab HR (2020) TiO2: SiO2 thin film coated annular photoreactor for degradation of oily contamination from waste water. J Water Process Eng 37:101374

    Article  Google Scholar 

  50. Zhang T et al (2020) Removal of formaldehyde in urban office building by the integration of ventilation and photocatalyst-coated window. Sustain Cities Soc 55:102050

    Article  Google Scholar 

  51. Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B 49(1):1–14

    Article  CAS  Google Scholar 

  52. Reddy JN (2019) Introduction to the finite element method. McGraw-Hill Education, New York

    Google Scholar 

  53. Liu X et al (2021) A new discrete element-embedded finite element method for transient deformation, movement and heat transfer in packed bed. Int J Heat Mass Transf 165:120714

    Article  Google Scholar 

  54. Ali L et al (2020) The impact of nanoparticles due to applied magnetic dipole in micropolar fluid flow using the finite element method. Symmetry 12(4):520

    Article  CAS  Google Scholar 

  55. Kojic M et al (2017) A composite smeared finite element for mass transport in capillary systems and biological tissue. Comput Methods Appl Mech Eng 324:413–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang Z et al (2020) An interval finite element method for electromagnetic problems with spatially uncertain parameters. Sci China Technol Sci 63(1):25–43

    Article  Google Scholar 

  57. Walsh JP, Ghadiri M, Shirazian S (2020) CFD approach for simulation of API release from solid dosage formulations. J Mol Liq 317:113899

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siamak Motahari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasanpour, M., Motahari, S., Jing, D. et al. Numerical Modeling for the Photocatalytic Degradation of Methyl Orange from Aqueous Solution using Cellulose/Zinc Oxide Hybrid Aerogel: Comparison with Experimental Data. Top Catal (2021). https://doi.org/10.1007/s11244-021-01451-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11244-021-01451-y

Keywords

Navigation