Skip to main content

Advertisement

Log in

Characterization and Evaluation of Copper Slag as a Bifunctional Photocatalyst for Alcohols Degradation and Hydrogen Production

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

With the goal of providing an economically viable method for reducing water pollution and health impact by the mezcal industry wastes, photocatalytic degradation of toxic alcohols using copper slag (CS) was evaluated, investigating the possibility for a concurrent hydrogen production. CS was characterized extensively by XRD, XRF, SEM–EDS, UV–Vis and electrochemical techniques to evaluate its properties as a photocatalyst. The slag consists of magnetite, fayalite and a silicate glass phase. CS showed a band gap of 2.75 eV, which is in the values range reported for fayalite, an n-type semiconductor with a clearly defined surface state. The band edge scheme for CS shows energy levels within the range required to perform the photocatalytic water reduction reaction, as well as the oxidation of the studied alcohols and their by-products. Experiments using UV and simulated solar light show that the efficiency of CS is higher in the visible range and that hydrogen production increases in the order methanol > propanol > isoamyl alcohol. An apparent quantum yield for methanol degradation of 40% under simulated solar light was obtained. This provides the prospect for a low cost and potential efficient photocatalyst for the oxidation of organic pollutants in industrial wastewater under solar radiation, with the simultaneous hydrogen generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110(11):6503–6570. https://doi.org/10.1021/cr1001645

    Article  CAS  PubMed  Google Scholar 

  2. Spasiano D, Marotta R, Malato S, Fernandez-Ibañez P, Somma ID (2015) A review of solar photocatalysis: materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach. Appl Catal B-Environ 170–171:90–123. https://doi.org/10.1016/j.apcatb.2014.12.050

    Article  CAS  Google Scholar 

  3. Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027. https://doi.org/10.1016/j.watres.2010.02.039

    Article  CAS  PubMed  Google Scholar 

  4. Chiarello G-L, Aguirre M, Selli E (2010) Hydrogen production by photocatalytic steam reforming of methanol on noble metal-modified TiO2. J Catal 273:182–190. https://doi.org/10.1016/j.jcat.2010.05.012

    Article  CAS  Google Scholar 

  5. Dozzi MV, Chiarello GL, Pedroni M, Livraghi S, Giamello E, Selli E (2017) High photocatalytic hydrogen production on Cu(II) pre-grafted Pt/TiO2. Appl Cat B 209:417–428. https://doi.org/10.1021/es9038962

    Article  CAS  Google Scholar 

  6. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’Shea K, Entezari MH, Dionysiou DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B—Environ 125:331–349. https://doi.org/10.1016/j.apcatb.2012.05.036

    Article  CAS  Google Scholar 

  7. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanismshoffmann and materials. Chem Rev 114:9919–9986. https://doi.org/10.1021/cr5001892

    Article  CAS  PubMed  Google Scholar 

  8. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96. https://doi.org/10.1021/cr00033a004

    Article  CAS  Google Scholar 

  9. Esswein AJ, Nocera DG (2007) Hydrogen production by molecular photocatalysis. Chem Rev 107(10):4022–4047. https://doi.org/10.1021/cr050193e

    Article  CAS  PubMed  Google Scholar 

  10. Kurnianditia L, Ong W-S, Chang WS, Chai S-P (2015) Heteroatom doped graphene in photocatalysis: a review. Appl Surf Sci 358:2–14. https://doi.org/10.1016/j.apsusc.2015.08.177

    Article  CAS  Google Scholar 

  11. Coronado JM, Fresno F, Hernandez-Alonso MD, Portela R (2013) Design of advanced photocatalytic materials for energy and environmental applications. Springer, Londres. 10.1007/978-1-4471-5061-9

  12. Colón G (2016) Towards the hydrogen production by photocatalysis. Appl Catal A-General 518:48–59. https://doi.org/10.1103/PhysRevB.71.035105

    Article  CAS  Google Scholar 

  13. Sugrañez R, Cruz-Yusta M, Mármol I, Martín F, Morales J, Sánchez L (2012) Use of industrial waste for the manufacturing of sustainable building materials. Chem Sus Chem 5:694–699. https://doi.org/10.1002/cssc.201100552

    Article  CAS  Google Scholar 

  14. Bennett JA, Wilson W, Lee AF (2016) Catalytic applications of waste derived materials. J Mater Chem A 4:3617–3637. https://doi.org/10.1039/C5TA09613H

    Article  CAS  Google Scholar 

  15. Liu H, Xia T, Shon HK, Vigneswaran S (2011) Preparation of tittania-containing photocatalyst from metallurgical slag waste and photodegradation of 2.4-dicholophenol. J Ind Eng Chem 17:461–467. https://doi.org/10.1016/j.jiec.2010.10.029

    Article  CAS  Google Scholar 

  16. Amorim CC, Leão MMD, Moreira R, Fabris JD, Henriquez AB (2013) Performance of blast furnace waste for azo dye degradation through photo-Fenton-like processes. Chem Eng J 224:59–66. https://doi.org/10.1016/j.cej.2013.01.053

    Article  CAS  Google Scholar 

  17. Zhang YJ, Chai Q (2014) Alkali-activated blast furnace slag-based nanomaterial as a novel catalyst for synthesis of hydrogen fuel. Fuel 115:84–87. https://doi.org/10.1016/j.fuel.2013.06.051

    Article  CAS  Google Scholar 

  18. Zhang YJ, Zhang L, Kang L, Yang MY, Zhang K (2017) A new CaWO4/alkali-activated blast furnace slag-based cementitious composite for production of hydrogen. Int J Hydrogen Energ 42:3690–3697. https://doi.org/10.1016/j.ijhydene.2016.07.173

    Article  CAS  Google Scholar 

  19. Kang L, Zhang YJ, Zhang L, Zhang K (2017) Preparation, characterization and photocatalytic activity of novel CeO2 loaded porous alkali-activated steel slag-based binding material. Int J Hydrogen Energ 42:17341–17349. https://doi.org/10.1016/j.ijhydene.2017.04.035

    Article  CAS  Google Scholar 

  20. Huanosta-Gutiérrez T, Dantas RF, Ramírez-Zamora RM, Esplugas S (2012) Evaluation of copper slag to catalyze advanced oxidation processes for the removal of phenol in water. J Hazard Mater 213:325–330. https://doi.org/10.1016/j.jhazmat.2012.02.004

    Article  CAS  PubMed  Google Scholar 

  21. Solís-López M, Durán-Moreno A, Rigas F, Morales AA, Navarrete M, Ramírez-Zamora RM (2014) 9 - Assessment of copper slag as a sustainable Fenton-type photo-catalyst for water disinfection. In: Ahuja S, (ed) Water reclamation and sustainability, Elsevier, Boston. pp 199–227. ISBN 9780124116450. https://doi.org/10.1016/B978-0-12-411645-0.00009-2

  22. Arzate-Salgado SY, Morales-Pérez AA, Solís-López M, Ramírez-Zamora RM (2016) Evaluation of metallurgical slag as a Fenton-type photocatalyst for the degradation of an emerging pollutant: diclofenac. Catal Today 266:126–135. https://doi.org/10.1016/j.cattod.2015.09.026

    Article  CAS  Google Scholar 

  23. Bowker M, Bahruji H, Kennedy J, Jones W, Hartley G, Morton C (2015) The photocatalytic window: photo-reforming of organics and water splitting for sustainable hydrogen production. Catal Lett 145:214–219. https://doi.org/10.1007/s10562-014-1443-x

    Article  CAS  Google Scholar 

  24. Lin W-C, Yang W-D, Huang I-L, Wu T-S, Chung Z-J (2009) Hydrogen production from methanol/water photocatalytic decomposition using Pt/TiO2-xNx catalyst. Energy Fuels 23:2192–2196. https://doi.org/10.1021/ef801091p

    Article  CAS  Google Scholar 

  25. Li X, Yu J, Low J, Fang Y, Xiao J, Chen X (2015) Engineering heterogeneous semiconductors for solar water splitting. J Mater Chem A 3:2485–2534. https://doi.org/10.1039/C4TA04461D

    Article  CAS  Google Scholar 

  26. Al-Azri ZHN, Chen W-T, Chan A, Jovic V, Ina T, Idriss H, Waterhouse GIN (2015) The roles of metal co-catalysts and reaction media in photocatalytic hydrogen production: performance evaluation of M/TiO2 photocatalysts (M = Pd, Pt, Au) in different alcohol–water mixtures. J Catal 329:355–367. https://doi.org/10.1016/j.jcat.2015.06.005

    Article  CAS  Google Scholar 

  27. Jiménez JA (2009) Identificación y cuantificación de algunos alcoholes en la destilación y rectificación del mezcal obtenido de agave potatoczucc. Dissertation, Tecnologic University of the Mixteca, Oaxaca, Mexico. https://jupiter.utm.mx/~tesis_dig/10969.pdf. Accessed 25 April 2017

  28. Vera AM, Silva SL, Guzmán RI, López MG (2007) La destilación, etapa importante en el proceso de elaboración del mezcal. Agroproduce, Febrero 07, pp 18-20

  29. Mezcal Regulator Council. (2019). Informe de producción de mezcal del año 2019. www.crm.org.mx/PDF/INF_ACTIVIDADES/INFORME2019. Accessed 20 April 2019

  30. Biswas S, Satapathy A (2010) Use of copper slag in glass−epoxy composites for improved wear resistance. Wast Man Res 28:615–625. https://doi.org/10.1177/0734242X09352260

    Article  CAS  Google Scholar 

  31. Ramírez-Ortega D, Meléndez A, Acevedo-Peña P, González I, Arroyo R (2014) Semiconducting properties of ZnO/TiO2 composites byelectrochemical measurements and their relationship with photocatalytic activity. Electrochem Acta 140:541–549. https://doi.org/10.1016/j.electacta.2014.06.060

    Article  CAS  Google Scholar 

  32. Medina Valtierra MG (2008) Cuantificación de alcoholes y aldehídos en mezcal por cromatografía de gases y microextracción en fase sólida seguido de cromatografía de gases. Dissertation, Universidad Nacional Autónoma de México. https://132.248.9.195/ptd2008/octubre/0633133/Index.html. Accessed 16 Jun 2016

  33. IUPAC (2006) Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by McNaught AD, Wilkinson A. Blackwell Scientific Publications, Oxford (1997). XML on-line corrected version: https://goldbook.iupac.org (2006) created by Nic M, Jirat J, Kosata B; updates compiled by Jenkins A. ISBN 0-9678550-9-8. https://doi.org/10.1351/goldbook

  34. Hu C, Muller-Karger FE, Zepp RG (2002) Absorbance, absorption coefficient, and apparent quantum yield: a comment on common ambiguity in the use of these optical concepts. Limnol Oceanogr 47:1261–1267. https://doi.org/10.4319/lo.2002.47.4.1261

    Article  Google Scholar 

  35. Hatchard CG, Parker CA (1956) A new sensitive chemical actinometer - II. Potassium ferrioxalate as a standard chemical actinometer. Proc R Soc Lond A 235:518–536. https://doi.org/10.1098/rspa.1956.0102

    Article  CAS  Google Scholar 

  36. Serpone N (1997) Relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. J Photoch Photobio A 104:1–12. https://doi.org/10.1016/S1010-6030(96)04538-8

    Article  CAS  Google Scholar 

  37. Su R, Tiruvalam R, Logsdail A, He Q, Downing CA, Jensen MT, Dimitratos N, Kesavan L, Wells PP, Bechstein R, Jensen HH, Wendt S, Catlow RA, Kiely CJ, Hutchings GJ, Besenbacher F (2014) Designer titania-supported Au_Pd nanoparticles for efficient photocatalytic hydrogen production. ACS Nano 8:3490–3497. https://doi.org/10.1021/nn500963m

    Article  CAS  PubMed  Google Scholar 

  38. Takahashi Y, Kubuki S, Akiyama K, Sinkó K, Kuzmann E, Homonnay Z, Nishida T (2014) Visible light activated photo-catalytic effect and local structure of iron silicate glass prepared by sol-gel method. Hyperfine Interact 226:747–753. https://doi.org/10.1007/s10751-013-0928-0

    Article  CAS  Google Scholar 

  39. Tokár K, Piekarz P, Derzsi M, Jochym PT, Łażewski J, Sternik M, Parlinski K (2010) Electronic and optical properties of the Mg 2–x Fe x SiO 4 spinel: From band insulator to Mott insulator. Phys Rev B 82:195116. https://doi.org/10.1103/PhysRevB.82.195116

    Article  CAS  Google Scholar 

  40. Jiang X, Guo GY (2004) Electronic structure, magnetism, and optical properties of Fe2SiO4 fayalite at ambient and high pressures: a GGA+ U study. Phys Rev B 69:155108. https://doi.org/10.1103/PhysRevB.69.155108

    Article  CAS  Google Scholar 

  41. Cococcioni M, De Gironcoli S (2005) Linear response approach to the calculation of the effective interaction parameters in the LDA+ U method. Phys Rev B 71:035105. https://doi.org/10.1103/PhysRevB.71.035105

    Article  CAS  Google Scholar 

  42. Williams Q, Knittle E, Reichlin R, Martin S, Jeanloz R (1990) Structural and electronic properties of Fe2SiO4-fayalite at ultrahigh pressures: amorphization and gap closure. J Geophys Res-Sol EA 95:21549–21563. https://doi.org/10.1029/JB095iB13p21549

    Article  CAS  Google Scholar 

  43. Bard AJ, Faulkner LR (2001). Electrochemical methods: Fundamentals and applications, 2nd. edn. John Wiley & Sons, Inc., USA, p 751. https://doi.org/10.1002/bbpc.19810851142

  44. Beranek R (2011) (Photo)electrochemical Methods for the Determination of the band edge positions of TiO2-Based Nanomaterials. Hindawi Publishing Corporation, Adv Phys Chem, 2011 Article ID 786759. https://doi.org/10.1155/2011/786759

  45. Gelderman K, Lee L, Donne SW (2007) Flat-band potential of a semiconductor: using the mott-schottky equation. J Chem Educ 84:685–688. https://doi.org/10.1021/ed084p685

    Article  CAS  Google Scholar 

  46. Fang JW, Fan HQ, Li MM, Long CB (2015) Nitrogen self-doped graphitic carbon nitride as efficient visible light photocatalyst for hydrogen evolution. J Mater Chem A 3:13819–13826. https://doi.org/10.1039/C5TA02257F

    Article  CAS  Google Scholar 

  47. Lasia A (2014) Electrochemical impedance spectroscopy and its spplications. Springer Science+Business Media, New York. https://doi.org/10.1007/978-1-4614-8933-7_10

  48. Baray-Calderón A, Acevedo-Peña P, Castelo-González OA, Martínez-Alonso C, Sotelo-Lerma M, Arenas-Arrocena MC, Hu H (2019) Appl Surf Sci 475:676–683. https://doi.org/10.1016/j.apsusc.2018.12.201

    Article  CAS  Google Scholar 

  49. León-Luna MÁ, Acevedo-Peña P, Reguera E (2020) J Electrochem Soc 167:046503. https://doi.org/10.1149/1945-7111/ab7178

    Article  CAS  Google Scholar 

  50. Xu Y, Schoonen MA (2000) The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Mineral 85:543–556. https://doi.org/10.2138/am-2000-0416

    Article  CAS  Google Scholar 

  51. Kennedy JH, Frese KW (1978) Flatband potentials and donor densities of polycrystalline α-Fe2O3 determined from Mott-Schottky plots. J Electrochem Soc 125:723–726. https://doi.org/10.1149/1.2131535

    Article  CAS  Google Scholar 

  52. Wu W, Jiang C, Roy VL (2015) Recent progress in magnetic iron oxide–semiconductor composite nanomaterials as promising photocatalysts. Nanoscale 7:38–58. https://doi.org/10.1039/C4NR04244A

    Article  CAS  PubMed  Google Scholar 

  53. Mishra M, Chun D-M (2015) Fe2O3 as a photocatalytic material: a review. Appl Catal A-Gen 498:126–141. https://doi.org/10.1016/j.apcata.2015.03.023

    Article  CAS  Google Scholar 

  54. Rossetti I (2012) Hydrogen Production by Photoreforming of Renewable Substrates, Chem Eng 2012:21, Article ID 964936. https://doi.org/10.5402/2012/964936

  55. Patsoura A, Kondarides DI, Verykios XE (2006) Enhancement of photoinduced hydrogen production from irradiated Pt/TiO2 suspensions with simultaneous degradation of azo-dyes. Appl Catal B 64:171. https://doi.org/10.1016/j.apcatb.2005.11.015

    Article  CAS  Google Scholar 

  56. Daskalaki VM, Antoniadou M, Li Puma G, Kondarides DI, Lianos P (2010) Solar light-responsive Pt/CdS/tio2 production and simultaneous degradation of inorganic or organic sacrificial agents in wastewater. Environ Sci Technol 44:7200–7205. https://doi.org/10.1021/es9038962

    Article  CAS  PubMed  Google Scholar 

  57. Tomita O, Otsubo T, Higashi M, Ohtani B, Abe R (2016) Partial oxidation of alcohols on visible-light responsive WO3 photocatalysts loaded with palladium oxide cocatalyst. ACS Catal 6:1134–1144. https://doi.org/10.1021/acscatal.5b01850

    Article  CAS  Google Scholar 

  58. Herrmann JM (2010) Fundamentals and misconceptions in photocatalysis. J Photoch Photobio A 216(2–3):85–93. https://doi.org/10.1016/j.jphotochem.2010.05.015

    Article  CAS  Google Scholar 

  59. Liqiang J, Xiaojun S, Jing S, Weimin C, Zili X, Yaoguo D, Honggang F (2003) Review of surface photovoltage spectra of nano-sized semiconductor and its applications in heterogeneous photocatalysis. Sol Energy Mater Sol Cells 79(2):133–151. https://doi.org/10.1016/S0927-0248(02)00393-8

    Article  CAS  Google Scholar 

  60. Kawai T, Sakata T (1980) Photocatalytic hydrogen production from liquid methanol and water. J Chem Soc Chem Commun. https://doi.org/10.1039/C39800000694

    Article  Google Scholar 

  61. López CR, Pulido E, Ortega JA, Santiago DE, Doña JM, González O (2015) Comparative study of alcohols as sacrificial reagents in H2 production by heterogeneous photocatalysis using Pt/TiO2 catalysts. J Photoch Photobio A 312:45–54. https://doi.org/10.1016/j.jphotochem.2015.07.005

    Article  CAS  Google Scholar 

  62. Wang X, Geysen D, Padilla Tinoco SV, D'Hoker NVGT, Van Gerven T, Blanpain B (2015) Characterisation of copper slag in view of metal recovery. Miner Process Extract Metall 124:83–87. https://doi.org/10.1179/1743285515Y.0000000004

    Article  CAS  Google Scholar 

  63. Panagiotopoulou P, Karamerou EE, Kondarides DI (2013) Kinetics and mechanism of glycerol photo-oxidation and photo-reforming reactions in aqueous TiO2 and Pt/TiO2 suspensions. Catal Today 209:91–98. https://doi.org/10.1016/j.cattod.2012.09.029

    Article  CAS  Google Scholar 

  64. Bahruji H, Bowker M, Davies PR, Saeed L, Dickinson A, Greaves J, James D, Millar L, Pedrono F (2010) Sustainable H2 gas production by photocatalysis. J Photch Photobio A 216:115–118. https://doi.org/10.1016/j.jphotochem.2010.06.022

    Article  CAS  Google Scholar 

  65. Chiarello G-L, Ferri D, Selli E (2011) Effect of the CH3OH/H2O ratio on the mechanism of the gas-phase photocatalytic reforming of methanol on noble metal-modified TiO2. J Catal 280:168–177. https://doi.org/10.1016/j.jcat.2011.03.013

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from DGAPA under grant IV100616. Claudia V. Montoya thanks CONACYT and DGAPA for her PhD scholarship. The authors thank to Dr. Aida Gutiérrez for her comments and recommendations in the field of diffuse reflectance spectrometry, Biol. Germán Álvarez Lozano and MSc. Jorge Luis Romero Hernández for their support on Scattering Electron Microscopy. Authors are also grateful for the support of XRD and XRF Laboratory of the Geology Institute at UNAM, member of National Laboratory of Mineralogy and Geochemistry of Mexico, in the materials characterization, especially to Dr. T. Pi-Puig and Quim. Rufino Lozano.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa-María Ramírez-Zamora.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 409 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montoya-Bautista, C.V., Acevedo-Peña, P., Zanella, R. et al. Characterization and Evaluation of Copper Slag as a Bifunctional Photocatalyst for Alcohols Degradation and Hydrogen Production. Top Catal 64, 131–141 (2021). https://doi.org/10.1007/s11244-020-01362-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01362-4

Keywords

Navigation