Skip to main content

Advertisement

Log in

Templated Synthesis of Copper Modified Tin-Doped Ceria for Catalytic CO Oxidation

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Ceria-tin (CS) oxide catalytic systems were synthesized using cetyltrimethylammonium bromide (CTAB) and Pluronic 123 (P123) templates and modified with CuOx using two techniques: the “one-pot” method (Cu addition during CS synthesis) and the post-impregnation (IM). The catalysts were tested in CO oxidation in the stoichiometric CO/O2 mixture balanced with He. XRD, TPR, Raman spectroscopy, XPS, N2 physisorption, H2-TPR, HR TEM and SEM–EDS were used for catalysts characterization. CS P123 showed better CO conversion than CS CTAB at 100–200 °C and lower at higher temperatures, due to higher defectiveness and oxygen mobility in CS CTAB. Modification with copper improves catalytic action of all catalysts at low temperatures, but to a different degree depending on modification technique and template type. Cu–CS CTAB prepared by the “one-pot” technique was much more efficient than its IM counterpart and both P123-templated catalysts. The best efficiency of Cu–CS CTAB results from the strongest interaction of Cu with CS to form CuCeSnOx which provides accessibility of Cu+ adsorption sites, and low stability of surface carbonate groups improving low-temperature efficiency. Cu–CS P123 IM efficiency decreases in the oxygen-enriched reaction mixture, the reasons are discussed in terms of the ratio between oxidation and reduction stage rates in MvK mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Satsuma A, Osaki K, Yanagihara M, Ohyama J, Shimizu K (2013) Activity controlling factors for low-temperature oxidation of CO over supported Pd catalysts. Appl Catal B Environ 132–133:511–518

    Article  CAS  Google Scholar 

  2. Mergler YJ, Van Aalst A, Van Delft J, Nieuwenhuys BE (1996) CO oxidation over promoted Pt catalysts. Appl Catal B Environ 10(4):245–261

    Article  CAS  Google Scholar 

  3. Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet MJ, Delmon B (1993) Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4. J Catal 144(1):175–192

    Article  CAS  Google Scholar 

  4. Fornasiero P, Balducci G, Di Monte R, Kašpar J, Sergo V, Gubitosa G, Ferrero A, Graziani M (1996) Modification of the redox behaviour of CeO2 induced by structural doping with ZrO2. J Catal 164(1):173–183

    Article  CAS  Google Scholar 

  5. Ayastuy JL, Iglesias-González A, Gutiérrez-Ortiz MA (2014) Synthesis and characterization of low amount tin-doped ceria (CeXSn1-XO2-δ) for catalytic CO oxidation. Chem Eng J 244:372–381

    Article  CAS  Google Scholar 

  6. Montini T, Melchionna M, Monai M, Fornasiero P (2016) Fundamentals and catalytic applications of CeO2-based materials. Chem Rev 116(10):5987–6041

    Article  PubMed  CAS  Google Scholar 

  7. Kim HJ, Jang G, Shin D, Woo J (2020) Design of ceria catalysts for low-temperature CO oxidation. ChemCatChem 12:11–26

    Article  CAS  Google Scholar 

  8. Atribak I, Bueno-López A, García-García A (2008) Combined removal of diesel soot particulates and NOx over CeO2–ZrO2 mixed oxides. J Catal 259(1):123–132

    Article  CAS  Google Scholar 

  9. Sasikala R, Gupta NM, Kulshreshtha SK (2001) Temperature-programmed reduction and CO oxidation studies over Ce-Sn mixed oxides. Catal Lett 71(1–2):69–73

    Article  CAS  Google Scholar 

  10. Zhang TY, Wang SP, Yu Y, Su Y, Guo XZ, Wang SR, Zhang SM, Wu SH (2008) Synthesis, characterization of CuO/Ce0.8Sn0.2O2 catalysts for low-temperature CO oxidation. Catal Commun 9(6):1259–1264

    Article  CAS  Google Scholar 

  11. Wang X, Xie YC (2001) Low-temperature CH4 total oxidation on catalysts based on high surface area SnO2. React Kinet Catal Lett 72(1):115–123

    Article  CAS  Google Scholar 

  12. Mirkelamoglu B, Karakas G (2005) CO oxidation over palladium—and sodium-promoted tin dioxide: catalyst characterization and temperature-programmed studies. Appl Catal A Gen 281(1–2):275–284

    Article  CAS  Google Scholar 

  13. Chen YZ, Liaw BJ, Huang CW (2006) Selective oxidation of CO in excess hydrogen over CuO/CexSn1-xO2 catalysts. Appl Catal A Gen 302(2):168–176

    Article  CAS  Google Scholar 

  14. Elias JS, Artrith N, Bugnet M, Giordano L, Botton GA, Kolpak AM, Shao-Horn Y (2016) Elucidating the nature of the active phase in copper/ceria catalysts for CO oxidation. ACS Catal 6(3):1675–1679

    Article  CAS  Google Scholar 

  15. Iglesias-González A, Ayastuy JL, González-Marcos MP, Gutiérrez-Ortiz MA (2014) CuO/CexSn1-xO2 catalysts with low tin content for CO removal from H2-rich streams. Int J Hydrog Energy 39(10):5213–5224

    Article  CAS  Google Scholar 

  16. Kaplin IY, Lokteva ES, Golubina EV, Shishova VV, Maslakov KI, Fionov AV, Isaikina OY, Lunin VV (2019) Efficiency of manganese modified CTAB-templated ceria-zirconia catalysts in total CO oxidation. Appl Surf Sci 485:432–440

    Article  CAS  Google Scholar 

  17. Nyathi TM, Fischer N, York APE, Morgan DJ, Hutchings GJ, Gibson EK, Wells PP, Catlow CRA, Claeys M (2019) Impact of nanoparticle–support interactions in Co3O4/Al2O3 catalysts for the preferential oxidation of carbon monoxide. ACS Catal 9(8):7166–7178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Chen Y-Z, Liaw B-J, Chen H-C (2006) Selective oxidation of CO in excess hydrogen over CuO/CexZr1-xO2 catalysts. Int J Hydrog Energy 31(3):427–435

    Article  CAS  Google Scholar 

  19. Biesinger MC, Lau LWM, Gerson AR, Smart RSC (2010) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V. Cu and Zn Appl Surf Sci 257(3):887–898

    Article  CAS  Google Scholar 

  20. Kaplin IY, Lokteva ES, Golubina EV, Maslakov KI, Strokova NE, Chernyak SA, Lunin VV (2017) Sawdust as an effective biotemplate for the synthesis of Ce0.8Zr0.2O2 and CuO–Ce0.8Zr0.2O2 catalysts for total CO oxidation. RSC Adv 7(81):51359–51372

    Article  CAS  Google Scholar 

  21. Wolfbeisser A, Sophiphun O, Bernardi J, Wittayakun J, Föttinger K, Rupprechter G (2016) Methane dry reforming over ceria-zirconia supported Ni catalysts. Catal Today 277:234–245

    Article  CAS  Google Scholar 

  22. Reina TR, Ivanova S, Laguna OH, Centeno MA, Odriozola JA (2016) WGS and CO-PrOx reactions using gold promoted copper-ceria catalysts: “Bulk CuO-CeO2 vs. CuO-CeO2/Al2O3 with low mixed oxide content”. Appl Catal B Environ 197:62–72

    Article  CAS  Google Scholar 

  23. Sedmak G, Hočevar S, Levec J (2004) Transient kinetic model of CO oxidation over a nanostructured Cu0.1Ce0.9O2-y catalyst. J Catal 222(1):87–99

    Article  CAS  Google Scholar 

  24. Galtayries A, Sporken R, Riga J, Blanchard G, Caudano R (1998) XPS comparative study of ceria/zirconia mixed oxides: powders and thin film characterisation. J Electron Spectros Relat Phenomena 88–91:951–956

    Article  Google Scholar 

  25. Liu Z, Feng X, Zhou Z, Feng Y, Li J (2018) Ce-Sn binary oxide catalyst for the selective catalytic reduction of NOx by NH3. Appl Surf Sci 428:526–533

    Article  CAS  Google Scholar 

  26. Tang X, Zhang B, Li Y, Xu Y, Xin Q, Shen W (2004) Carbon monoxide oxidation over CuO/CeO2 catalysts. Catal Today 93–95:191–198

    Article  CAS  Google Scholar 

  27. Holgado JP, Munuera G, Espinós JP, González-Elipe AR (2000) XPS study of oxidation processes of CeOx defective layers. Appl Surf Sci 158(1–2):164–171

    Article  CAS  Google Scholar 

  28. Mukherjee D, Rao BG, Reddy BM (2016) CO and soot oxidation activity of doped ceria: Influence of dopants. Appl Catal B Environ 197:105–115

    Article  CAS  Google Scholar 

  29. Moretti E, Lenarda M, Storaro L, Talon A, Frattini R, Polizzi S, Rodríguez-Castellón E, Jiménez-López A (2007) Catalytic purification of hydrogen streams by PROX on Cu supported on an organized mesoporous ceria-modified alumina. Appl Catal B Environ 72(1–2):149–156

    Article  CAS  Google Scholar 

  30. Liu W, Flytzanistephanopoulos M (1995) Total oxidation of carbon monoxide and methane over transition metal fluorite oxide composite catalysts: I. Catalyst composition and activity. J Catal 153(2):304–316

    Article  CAS  Google Scholar 

  31. McBride JR, Hass KC, Poindexter BD, Weber WH (1994) Raman and x-ray studies of Ce1− xRExO2−y, where RE=La, Pr, Nd, Eu, Gd, and Tb. J Appl Phys 76(4):2435–2441

    Article  CAS  Google Scholar 

  32. Popović ZV, Dohčević-Mitrović Z, Šćepanović M, Grujić-Brojčin M, Aškrabić S (2011) Raman scattering on nanomaterials and nanostructures. Ann Phys 523(1–2):62–74

    Article  CAS  Google Scholar 

  33. Liu L, Yao Z, Liu B, Dong L (2010) Correlation of structural characteristics with catalytic performance of CuO/CexZr1-xO2 catalysts for NO reduction by CO. J Catal 275(1):45–60

    Article  CAS  Google Scholar 

  34. Liu W, Flytzani-Stephanopoulos M (1995) Total oxidation of carbon-monoxide and methane over transition metal fluorite oxide composite catalysts. II. Catalyst characterization and reaction-kinetics. J Catal 153(2):317–332

    Article  CAS  Google Scholar 

  35. Kang R, Wei X, Bin F, Wang Z, Hao Q, Dou B (2018) Reaction mechanism and kinetics of CO oxidation over a CuO/Ce0.75Zr0.25O2- δ catalyst. Appl Catal A Gen 565:46–58

    Article  CAS  Google Scholar 

  36. Jia A-P, Jiang S-Y, Lu J-Q, Luo M-F (2010) Study of catalytic activity at the CuO−CeO2 interface for CO oxidation. J Phys Chem C 114(49):21605–21610

    Article  CAS  Google Scholar 

  37. Zhang C, Wen XD, Teng BT, Zhao Y, Fan M (2015) Catalytic effects of Zr doping ion on ceria-based catalyst. Fuel Process Technol 131:1–6

    Article  CAS  Google Scholar 

  38. Moreno M, Bergamini L, Baronetti GT, Laborde MA, Mariño FJ (2010) Mechanism of CO oxidation over CuO/CeO2 catalysts. Int J Hydrog Energy 35(11):5918–5924

    Article  CAS  Google Scholar 

  39. Martínez-Arias A, Fernández-García M, Gálvez O, Coronado JM, Anderson JA, Conesa JC, Soria J, Munuera G (2000) Comparative study on redox properties and catalytic behavior for CO oxidation of CuO/CeO2 and CuO/ZrCeO4 catalysts. J Catal 195(1):207–216

    Article  CAS  Google Scholar 

  40. Granger P, Troncéa S, Dacquin JP, Trentesaux M, Parvulescu VI (2018) Support-induced effect on the catalytic properties of Pd particles in water denitrification: impact of surface and structural features of mesoporous ceria-zirconia support. Appl Catal B Environ 224:648–659

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from Lomonosov Moscow State University Program of Development for providing access to the XPS and TEM instruments. We are grateful to L.V. Voronova for assistance with catalytic tests. Igor Kaplin acknowledges support from Haldor Topsøe Ph.D. scholarship program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Igor Yu. Kaplin or Ekaterina S. Lokteva.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1148 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaplin, I.Y., Lokteva, E.S., Tikhonov, A.V. et al. Templated Synthesis of Copper Modified Tin-Doped Ceria for Catalytic CO Oxidation. Top Catal 63, 86–98 (2020). https://doi.org/10.1007/s11244-020-01251-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01251-w

Keywords

Navigation