Skip to main content
Log in

A Comparative Study of Hydrodeoxygenation of Furfural Over Fe/Pt(111) and Fe/Mo2C Surfaces

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

It is desirable to convert biomass-derived furfural to 2-methylfuran through the hydrodeoxygenation (HDO) reaction using an inexpensive catalyst with high stability. In this work, Mo2C was used as an alternative substrate to replace precious Pt to support monolayer Fe for the HDO reaction of furfural. The HDO activity and stability of Fe/Pt(111) and Fe/Mo2C/Mo(110) surfaces were compared. Density functional theory calculations and vibrational spectroscopy results indicated that both surfaces bonded to furfural with similar adsorption geometries and should be active toward the furfural HDO reaction. Temperature programmed desorption experiments confirmed a similar HDO activity between the two surfaces, with Fe/Mo2C/Mo(110) being more thermally stable than Fe/Pt(111). The combined theoretical and experimental results demonstrated that Fe/Mo2C should be a promising non-precious metal catalyst for the HDO reaction of furfural to produce 2-methylfuran.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Xiong K, Yu W, Vlachos DG, Chen JG (2015) ChemCatChem 7(9):1402

    Article  CAS  Google Scholar 

  2. Xiong K, Lee W, Bhan A, Chen JG (2014) ChemSusChem 7(8):2146

    Article  CAS  Google Scholar 

  3. Lange JP, Van Der Heide E, Van Buijtenen J, Price R (2012) ChemSusChem 5(1):150

    Article  CAS  Google Scholar 

  4. Egeblad K, Rass-Hansen J, Marsden C, Taarning E (2009) Catalysis 21:13–50

    Article  CAS  Google Scholar 

  5. Gutierrez A, Kaila RK, Honkela ML, Slioor R, Krause AOI (2009) Catal Today 147:239

    Article  CAS  Google Scholar 

  6. Zhao C, Kou Y, Lemonidou AA, Li X, Lercher JA (2009) Angewandte 121:4047

    Article  Google Scholar 

  7. Chen JG, Menning Ca, Zellner MB (2008) Surf Sci Rep 63(5):201

    Article  CAS  Google Scholar 

  8. Yu W, Xiong K, Ji N, Porosoff MD, Chen JG (2014) J Catal 317:253

    Article  CAS  Google Scholar 

  9. Luo J, Yun H, Mironenko AV, Goulas K, Lee JD, Monai M, Wang C, Vorotnikov V, Murray CB, Vlachos DG, Fornasiero P, Gorte RJ (2016) ACS Catal 6(7):4095

    Article  CAS  Google Scholar 

  10. Jiang Z, Wan W, Lin Z, Xie J, Chen JG (2017) ACS Catal 7(9):5758

    Article  CAS  Google Scholar 

  11. Humbert M, Chen J (2008) J Catal 257(2):297

    Article  CAS  Google Scholar 

  12. Wan W, Tackett BM, Chen JG (2017) Chem Soc Rev 46:1807

    Article  CAS  Google Scholar 

  13. Kitchin JR, Nørskov JK, Barteau MA, Chen JG (2005) Catal Today 105(1 SPEC. ISS.):66

    Article  CAS  Google Scholar 

  14. Kelly TG, Lee KX, Chen JG (2014) J Power Sources 271:76

    Article  CAS  Google Scholar 

  15. Kelly TG, Hunt ST, Esposito DV, Chen JG (2013) Int J Hydrog Energy 38(14):5638

    Article  CAS  Google Scholar 

  16. Kresse G, Furthmuller J (1996) Comput Mater Sci 6(1):15

    Article  CAS  Google Scholar 

  17. Kresse G, Furthmuller J (1996) Phys Rev B 54(16):11169

    Article  CAS  Google Scholar 

  18. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:(15)

    Article  Google Scholar 

  19. Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32(7):1456

    Article  CAS  Google Scholar 

  20. Frühberger B, Chen JG (1996) J Am Chem Soc 118(46):11599

    Article  Google Scholar 

  21. Hansgen D, Thomanek LM, Chen JG, Vlachos DG (2011) J Chem Phys 134(2011):184701

    Article  Google Scholar 

  22. Menning CA, Chen JG (2009) J Chem Phys 130:(17)

    Article  Google Scholar 

  23. Kim T, Assary RS, Curtiss LA, Marshall CL, Stair PC (2011) J Raman Spectrosc 42(12):2069

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This article was based on work supported as part of the Catalysis Center for Energy Innovation (CCEI), an Energy Frontier Research Center (EFRC) funded by the U.S. Department of Energy, Office of Basic Energy Sciences under Award Number DE-SC0001004. The DFT calculations were performed using computational resources at the Center for Functional Nanomaterials, a user facility at BNL, supported by the US Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingguang G. Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 199 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, W., Jiang, Z. & Chen, J.G. A Comparative Study of Hydrodeoxygenation of Furfural Over Fe/Pt(111) and Fe/Mo2C Surfaces. Top Catal 61, 439–445 (2018). https://doi.org/10.1007/s11244-018-0901-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-0901-x

Keywords

Navigation