Skip to main content

Advertisement

Log in

Facile and Cost Effective Synthesis of Oxide-Derived Silver Catalyst Electrodes via Chemical Solution Deposition for CO2 Electro-Reduction

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Electrochemical CO2 reduction to useful fuels is a promising strategy for the sustainable energy production. However, because CO2 reduction reaction involves sluggish kinetics, the development of high performing catalyst is a first priority for the success in this system. Herein, cost effective fabrication of oxide-derived silver catalyst for CO2 electro-reduction was successfully prepared by simple chemical solution deposition involving the following steps: (i) spin-coating of precursor solution, (ii) oxidation by air-annealing, and (iii) electrochemical reduction. The prepared silver catalyst achieved 83.7% of CO Faradaic efficiency at − 1.19 VRHE with an outstanding mass activity of 465.04 A g− 1 which was originated from the unique features of the catalyst as well as precursor solution. With the introduced fabrication method, the precursor solution containing relatively low silver concentration was preferred to form small silver particles, resulting in high catalytic activity. We anticipate the developed method to be widely applied for the preparation of oxide-derived metal catalysts and metal alloy nanostructured catalysts in advanced CO2 conversion system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Goeppert A, Czaun M, May RB, Prakash GKS, Olah GA, Narayanan SR (2011) Carbon dioxide capture from the air using a polyamine based regenerable solid adsorbent. J Am Chem Soc 133(50):20164–20167

    Article  CAS  Google Scholar 

  2. Lu Q, Rosen J, Jiao F (2014) Nanostructured metallic electrocatalysts for carbon dioxide reduction. ChemCatChem 7:38–47

    Article  Google Scholar 

  3. Benson EE, Kubiak CP, Sathrum AJ, Smieja JM (2009) Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem Soc Rev 38(1):89–99

    Article  CAS  Google Scholar 

  4. Hori Y (2008) Electrochemical CO2 reduction on metal electrodes. Modern aspect of electrochemistry, vol 42. Springer, New York

    Google Scholar 

  5. Chen Y, Li CW, Kanan MW (2012) Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J Am Chem Soc 134(49):19969–19972

    Article  CAS  Google Scholar 

  6. Liu M, Pang Y, Zhang B, De Luna P, Voznyy O, Xu J, Zheng X, Dinh CT, Fan F, Cao C, de Arquer FPG, Safaei TS, Mepham A, Klinkova A, Kumacheva E, Filleter T, Sinton D, Kelley SO, Sargent EH (2016) Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537(7620):382–386

    Article  CAS  Google Scholar 

  7. Zhu W, Zhang Y-J, Zhang H, Lv H, Li Q, Michalsky R, Peterson AA, Sun S (2014) Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J Am Chem Soc 136(46):16132–16135

    Article  CAS  Google Scholar 

  8. Feng X, Jiang K, Fan S, Kanan MW (2015) Grain boundary dependent CO2 electroreduction activity. J Am Chem Soc 137(14):4606–4609

    Article  CAS  Google Scholar 

  9. Kim C, Jeon HS, Eom T, Jee MS, Kim H, Friend CM, Min BK, Hwang YJ (2015) Achieving selective and efficient electrocatalytic activity for CO2 reduction using immobilized silver nanoparticles. J Am Chem Soc 137(43):13844–13850

    Article  CAS  Google Scholar 

  10. Jee MS, Jeon HS, Kim C, Lee H, Koh JH, Cho J, Min BK, Hwang YJ (2016) Enhancement in carbon dioxide activity and stability on nanostructured silver electrode and the role of oxygen. Appl Catal B 180:372–378

    Article  CAS  Google Scholar 

  11. Lu Q, Rosen J, Zhou Y, Hutchings GS, Kimmel YC, Chen JG, Jiao F (2014) A selective and efficient electrocatalyst for carbon dioxide reduction. Nat Commun 5:3242

    Google Scholar 

  12. Gao D, Zhou H, Wang J, Miao S, Yang F, Wang G, Wang J, Bao X (2015) Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J Am Chem Soc 137(13):4288–4291

    Article  CAS  Google Scholar 

  13. Whipple DT, Kenis PJA (2010) Prospects of CO2 utilization via direct heterogeneous electrochemical reduction. J Phys Chem Lett 1(24):3451–3458

    Article  CAS  Google Scholar 

  14. Won DH, Shin H, Koh J, Chung J, Lee HS, Kim H, Woo SI (2016) Highly efficient, selective, and stable CO2 electroreduction on a hexagonal Zn catalyst. Angew Chem Int Ed 55(32):9297–9300

    Article  CAS  Google Scholar 

  15. Koh JH, Jeon HS, Jee MS, Nursanto EB, Lee H, Hwang YJ, Min BK (2014) Oxygen plasma induced hierarchically structured gold electrocatalyst for selective reduction of carbon dioxide to carbon monoxide. J Phys Chem C 119(2):883–889

    Article  Google Scholar 

  16. Zhu W, Michalsky R, Metin Ö, Lv H, Guo S, Wright CJ, Sun X, Peterson AA, Sun S (2013) Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J Am Chem Soc 135(45):16833–16836

    Article  CAS  Google Scholar 

  17. Zhou LQ, Ling C, Jones M, Jia H (2015) Selective CO2 reduction on a polycrystalline Ag electrode enhanced by anodization treatment. Chem Commun 51(100):17704–17707

    Article  CAS  Google Scholar 

  18. Nursanto EB, Jeon HS, Kim C, Jee MS, Koh JH, Hwang YJ, Min BK (2016) Gold catalyst reactivity for CO2 electro-reduction: from nano particle to layer. Catal Today 260:107–111

    Article  CAS  Google Scholar 

  19. Kim H, Jeon HS, Jee MS, Nursanto EB, Singh JP, Chae K, Hwang YJ, Min BK (2016) Contributors to enhanced CO2 electroreduction activity and stability in a nanostructured Au electrocatalyst. ChemSusChem 9(16):2097–2102

    Article  CAS  Google Scholar 

  20. Lee S, Lee J (2016) Electrode build-up of reducible metal composites toward achievable electrochemical conversion of carbon dioxide. ChemSusChem 9(4):333–344

    Article  CAS  Google Scholar 

  21. Li CW, Kanan MW (2012) CO2 Reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J Am Chem Soc 134(17):7231–7234

    Article  CAS  Google Scholar 

  22. Ma M, Trześniewski BJ, Xie J, Smith WA (2016) Selective and efficient reduction of carbon dioxide to carbon monoxide on oxide-derived nanostructured silver electrocatalysts. Angew Chem Int Ed 55(33):9748–9752

    Article  CAS  Google Scholar 

  23. Murray BJ, Newberg JT, Walter EC, Li Q, Hemminger JC, Penner RM (2005) Reversible resistance modulation in mesoscopic silver wires induced by exposure to amine vapor. Anal Chem 77(16):5205–5214

    Article  CAS  Google Scholar 

  24. Bielmann M, Schwaller P, Ruffieux P, Gröning O, Schlapbach L, Gröning P (2002) AgO investigated by photoelectron spectroscopy: evidence for mixed valence. Phys Rev B 65(23):235431

    Article  Google Scholar 

  25. Koh JH, Won DH, Eom T, Kim N-K, Jung KD, Kim H, Hwang YJ, Min BK (2017) Facile CO2 electro-reduction to formate via oxygen bidentate intermediate stabilized by high-index planes of Bi dendrite catalyst. ACS Catal 7:5071–5077

    Article  CAS  Google Scholar 

  26. Rosen BA, Salehi-Khojin A, Thorson MR, Zhu W, Whipple DT, Kenis PJA, Masel RI (2011) Ionic liquid–mediated selective conversion of CO2 to CO at low overpotentials. Science 334(6056):643–644

    Article  CAS  Google Scholar 

  27. Hsieh Y-C, Senanayake SD, Zhang Y, Xu W, Polyansky DE (2015) Effect of chloride anions on the synthesis and enhanced catalytic activity of silver nanocoral electrodes for CO2 electroreduction. ACS Catal 5(9):5349–5356

    Article  CAS  Google Scholar 

  28. Kim C, Eom T, Jee MS, Jung H, Kim H, Min BK, Hwang YJ (2017) Insight into electrochemical CO2 reduction on surface-molecule-mediated ag nanoparticles. ACS Catal 7(1):779–785

    Article  CAS  Google Scholar 

  29. Rosen J, Hutchings GS, Lu Q, Rivera S, Zhou Y, Vlachos DG, Jiao F (2015) Mechanistic Insights into the electrochemical reduction of CO2 to CO on nanostructured Ag surfaces. ACS Catal 5(7):4293–4299

    Article  CAS  Google Scholar 

  30. Weaver JF, Hoflund GB (1994) Surface characterization study of the thermal decomposition of AgO. J Phys Chem 98(34):8519–8524

    Article  CAS  Google Scholar 

  31. Hoflund GB, Hazos ZF, Salaita GN (2000) Surface characterization study of Ag, AgO, and Ag2O using X-ray photoelectron spectroscopy and electron energy-loss spectroscopy. Phys Rev B 62(16):11126–11133

    Article  CAS  Google Scholar 

  32. Gao X-Y, Wang S-Y, Li J, Zheng Y-X, Zhang R-J, Zhou P, Yang Y-M, Chen L-Y (2004) Study of structure and optical properties of silver oxide films by ellipsometry, XRD and XPS methods. Thin Solid Films 455–456:438–442

    Article  Google Scholar 

  33. Won DH, Choi CH, Chung J, Chung MW, Kim E-H, Woo SI (2015) Rational design of a hierarchical tin dendrite electrode for efficient electrochemical reduction of CO2. ChemSusChem 8(18):3092–3098

    Article  CAS  Google Scholar 

  34. Jee MS, Kim H, Jeon HS, Chae KH, Cho J, Min BK, Hwang YJ (2017) Stable surface oxygen on nanostructured silver for efficient CO2 electroreduction. Catal Today 288:48–53

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the program of the Korea Institute of Science and Technology (KIST) and partly by the KU-KIST program by the Ministry of Science, ICT and Future Planning.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun Jeong Hwang or Byoung Koun Min.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nursanto, E.B., Da Hye Won, Jee, M.S. et al. Facile and Cost Effective Synthesis of Oxide-Derived Silver Catalyst Electrodes via Chemical Solution Deposition for CO2 Electro-Reduction. Top Catal 61, 389–396 (2018). https://doi.org/10.1007/s11244-017-0870-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-017-0870-5

Keywords

Navigation