Skip to main content
Log in

Comparative Analysis of Cobalt Oxide Nanoisland Stability and Edge Structures on Three Related Noble Metal Surfaces: Au(111), Pt(111) and Ag(111)

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Metal oxide nanostructures and thin films grown on metallic substrates have attracted strong attention as model catalysts and as interesting inverse catalyst systems in their own right. In this study, we investigate the role of metal support in the growth and stabilization of cobalt oxide nanostructures on the three related (111) surfaces of Au, Pt and Ag, as investigated by means of high-resolution scanning tunneling microscopy and DFT calculations. All three substrates promote the growth of crystalline CoOx (x = 1−2) islands under oxidative conditions, but we find several noteworthy differences in the occurrence and stabilization of four distinct cobalt oxide island phases: Co–O bilayers, O–Co–O trilayers, Co–O–Co–O double bilayers and O–Co–O–Co–O multilayers. Using atom-resolved images combined with analysis of defect lines in bilayer islands on Au and Pt, we furthermore unambiguously determine the edge structure. Interestingly, the island shape and abundances of edge types in bilayers change radically from mixed Co/O edge terminations on Au(111) to a predominance of Co terminated edges (~91 %) on Pt(111) which is especially interesting since the Co metal edges are expected to host the most active sites for water dissociation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xie X, Li Y, Liu Z-Q, Haruta M, Shen W (2009) Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458(7239):746–749

    Article  CAS  Google Scholar 

  2. Ren Y, Ma Z, Qian L, Dai S, He H, Bruce PG (2009) Ordered crystalline mesoporous oxides as catalysts for CO oxidation. Catal Lett 131(1–2):146–154

    Article  CAS  Google Scholar 

  3. Liao L, Zhang Q, Su Z, Zhao Z, Wang Y, Li Y, Lu X, Wei D, Feng G, Yu Q (2014) Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. Nat Nanotechnol 9(1):69–73

    Article  CAS  Google Scholar 

  4. Song F, Hu X (2014) Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat Commun. doi:10.1038/ncomms5477

    Google Scholar 

  5. Rosen J, Hutchings GS, Jiao F (2013) Ordered mesoporous cobalt oxide as highly efficient oxygen evolution catalyst. J Am Chem Soc 135(11):4516–4521

    Article  CAS  Google Scholar 

  6. Liotta LF, Wu H, Pantaleo G, Venezia AM (2013) Co3O4 nanocrystals and Co3O4–MO x binary oxides for CO, CH4 and VOC oxidation at low temperatures: a review. Catal Sci Technol 3(12):3085–3102

    Article  CAS  Google Scholar 

  7. Lu X, Ng YH, Zhao C (2014) Gold nanoparticles embedded within mesoporous cobalt oxide enhance electrochemical oxygen evolution. ChemSusChem 7(1):82–86

    Article  CAS  Google Scholar 

  8. Yeo BS, Bell AT (2011) Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J Am Chem Soc 133(14):5587–5593

    Article  CAS  Google Scholar 

  9. De Chialvo MG, Chialvo A (1993) Oxygen evolution reaction on Ni x Co(3−x)O4 electrodes with spinel structure. Electrochim Acta 38(15):2247–2252

    Article  Google Scholar 

  10. Wu G, Li N, Zhou D-R, Mitsuo K, Xu B-Q (2004) Anodically electrodeposited Co + Ni mixed oxide electrode: preparation and electrocatalytic activity for oxygen evolution in alkaline media. J Solid State Chem 177(10):3682–3692

    Article  CAS  Google Scholar 

  11. Lin P-Y, Skoglundh M, Löwendahl L, Otterstedt J-E, Dahl L, Jansson K, Nygren M (1995) Catalytic purification of car exhaust over cobalt- and copper-based metal oxides promoted with platinum and rhodium. Appl Catal B 6(3):237–254

    Article  CAS  Google Scholar 

  12. Törncrona A, Skoglundh M, Thormählen P, Fridell E, Jobson E (1997) Low temperature catalytic activity of cobalt oxide and ceria promoted Pt and Pd: -influence of pretreatment and gas composition. Appl Catal B 14(1):131–145

    Article  Google Scholar 

  13. Meyer W, Biedermann K, Gubo M, Hammer L, Heinz K (2008) Surface structure of polar Co3O4(111) films grown epitaxially on Ir(100)-(1 × 1). J Phys 20(26):265011

    CAS  Google Scholar 

  14. Heinz K, Hammer L (2013) Epitaxial cobalt oxide films on Ir(100)—the importance of crystallographic analyses. J Phys 25(17):173001

    CAS  Google Scholar 

  15. Gragnaniello L, Agnoli S, Parteder G, Barolo A, Bondino F, Allegretti F, Surnev S, Granozzi G, Netzer F (2010) Cobalt oxide nanolayers on Pd(100): the thickness-dependent structural evolution. Surf Sci 604(21):2002–2011

    Article  CAS  Google Scholar 

  16. De Santis M, Buchsbaum A, Varga P, Schmid M (2011) Growth of ultrathin cobalt oxide films on Pt(111). Phys Rev B 84(12):125430

    Article  Google Scholar 

  17. Li M, Altman E (2014) Shape, morphology, and phase transitions during co oxide growth on Au(111). J Phys Chem C 118(24):12706–12716

    Article  CAS  Google Scholar 

  18. Walton AS, Fester J, Bajdich M, Arman MA, Osiecki J, Knudsen J, Vojvodic A, Lauritsen JV (2015) interface controlled oxidation states in layered cobalt oxide nanoislands on gold. ACS Nano 9(3):2445–2453

    Article  CAS  Google Scholar 

  19. Fester J, Walton AS, Li Z, Lauritsen JV, Gold-supported two-dimensional cobalt oxyhydroxide (CoOOH) and multilayer cobalt oxide islands (submitted)

  20. Ferstl P, Mehl S, Arman M, Schuler M, Toghan A, Laszlo B, Lykhach Y, Brummel O, Lundgren E, Knudsen J (2015) Adsorption and activation of CO on Co3O4(111) thin films. J Phys Chem C 119(29):16688–16699

    Article  CAS  Google Scholar 

  21. Sun YN, Giordano L, Goniakowski J, Lewandowski M, Qin ZH, Noguera C, Shaikhutdinov S, Pacchioni G, Freund HJ (2010) The interplay between structure and CO oxidation catalysis on metal-supported ultrathin Oxide films. Angew Chem 122(26):4520–4523

    Article  Google Scholar 

  22. Freund H-J (2007) Metal-supported ultrathin oxide film systems as designable catalysts and catalyst supports. Surf Sci 601(6):1438–1442

    Article  CAS  Google Scholar 

  23. Fu Q, Li W-X, Yao Y, Liu H, Su H-Y, Ma D, Gu X-K, Chen L, Wang Z, Zhang H (2010) Interface-confined ferrous centers for catalytic oxidation. Science 328(5982):1141–1144

    Article  CAS  Google Scholar 

  24. Rodriguez J, Ma S, Liu P, Hrbek J, Evans J, Perez M (2007) Activity of CeO x and TiO x nanoparticles grown on Au(111) in the water-gas shift reaction. Science 318(5857):1757–1760

    Article  CAS  Google Scholar 

  25. Merte LR, Knudsen J, Grabow LC, Vang RT, Lægsgaard E, Mavrikakis M, Besenbacher F (2009) Correlating STM contrast and atomic-scale structure by chemical modification: vacancy dislocation loops on FeO/Pt(111). Surf Sci 603(2):L15–L18

    Article  CAS  Google Scholar 

  26. Zeuthen H, Kudernatsch W, Merte LR, Ono LK, Lammich L, Besenbacher F, Wendt S (2015) Unraveling the edge structures of platinum (111)-supported ultrathin FeO islands: the influence of oxidation state. ACS Nano 9(1):573–583

    Article  CAS  Google Scholar 

  27. Besenbacher F, Lægsgaard E, Mortensen K, Nielsen U, Stensgaard I (1988) Compact, high-stability, ‘‘thimble-size’’ scanning tunneling microscope. Rev Sci Instrum 59(7):1035–1038

    Article  CAS  Google Scholar 

  28. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47(1):558

    Article  CAS  Google Scholar 

  29. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758

    Article  CAS  Google Scholar 

  30. Kresse G, Furthmüller J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15–50

    Article  CAS  Google Scholar 

  31. Plessow PN, Bajdich M, Greene J, Vojvodic A, Abild-Pedersen F (2016) Trends in thermodynamic stability of ultrathin supported oxide films. J Phys Chem C. doi:10.1021/acs.jpcc.6b01404

    Google Scholar 

  32. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865

    Article  CAS  Google Scholar 

  33. Dudarev S, Botton G, Savrasov S, Humphreys C, Sutton A (1998) Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys Rev B 57(3):1505

    Article  CAS  Google Scholar 

  34. Nilius N, Benedetti S, Pan Y, Myrach P, Noguera C, Giordano L, Goniakowski J (2012) Electronic and electrostatic properties of polar oxide nanostructures: MgO(111) islands on Au(111). Phys Rev B 86(20):205410

    Article  Google Scholar 

  35. Giordano L, Pacchioni G, Goniakowski J, Nilius N, Rienks ED, Freund H-J (2007) Interplay between structural, magnetic, and electronic properties in a FeO/Pt(111) ultrathin film. Phys Rev B 76(7):075416

    Article  Google Scholar 

  36. Reuter K, Scheffler M (2001) Composition, structure, and stability of RuO2(110) as a function of oxygen pressure. Phys Rev B 65(3):035406

    Article  Google Scholar 

  37. Giordano L, Lewandowski M, Groot I, Sun Y-N, Goniakowski J, Noguera C, Shaikhutdinov S, Pacchioni G, Freund H-J (2010) Oxygen-induced transformations of an FeO(111) film on Pt(111): a combined DFT and STM study. J Phys Chem C 114(49):21504–21509

    Article  CAS  Google Scholar 

  38. Johansson N, Merte LR, Grånäs E, Wendt S, Andersen JN, Schnadt J, Knudsen J (2016) Oxidation of ultrathin FeO(111) grown on Pt(111): spectroscopic evidence for hydroxylation. Top Catal. doi:10.1007/s11244-015-0521-7

    Google Scholar 

  39. Li M, Altman E (2014) Cluster-size dependent phase transition of Co oxides on Au(111). Surf Sci 619:L6–L10

    Article  CAS  Google Scholar 

  40. Ma L-Y, Picone A, Wagner M, Surnev S, Barcaro G, Fortunelli A, Netzer FP (2013) Structure and electronic properties of CoO nanostructures on a vicinal Pd(100) surface. J Phys Chem C 117(36):18464–18474

    Article  CAS  Google Scholar 

  41. Zeuthen H, Kudernatsch W, Peng G, Merte LR, Ono LK, Lammich L, Bai Y, Grabow LC, Mavrikakis M, Wendt S (2013) Structure of stoichiometric and oxygen-rich ultrathin FeO(111) films grown on Pd(111). J Phys Chem C 117(29):15155–15163

    Article  CAS  Google Scholar 

  42. Mönig H, Todorovic M, Baykara MZ, Schwendemann TC, Rodrigo L, Altman EI, Perez R, Schwarz UD (2013) Understanding scanning tunneling microscopy contrast mechanisms on metal oxides: a case study. ACS Nano 7(11):10233–10244

    Article  Google Scholar 

  43. Goniakowski J, Giordano L, Noguera C (2013) Polarity compensation in low-dimensional oxide nanostructures: the case of metal-supported MgO nanoribbons. Phys Rev B 87(3):035405

    Article  Google Scholar 

Download references

Acknowledgments

The iNANO group gratefully acknowledges support from the Lundbeck Foundation and Villum Foundation. MB, PNP and AV gratefully acknowledge support from the U.S. Department of Energy Office of Basic Energy Science to the SUNCAT Center for Interface Science and Catalysis. AV acknowledges the support from the SLAC National Accelerator Lab LDRD program. MB, PNP and AV would like to acknowledge the use of the computer time allocation for the “Computational search for highly efficient 2d and 3d nano-catalysts for water splitting” at the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. ZS would like to acknowledge the financial support from the Chinese Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeppe V. Lauritsen.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 367 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fester, J., Bajdich, M., Walton, A.S. et al. Comparative Analysis of Cobalt Oxide Nanoisland Stability and Edge Structures on Three Related Noble Metal Surfaces: Au(111), Pt(111) and Ag(111). Top Catal 60, 503–512 (2017). https://doi.org/10.1007/s11244-016-0708-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0708-6

Keywords

Navigation