Skip to main content
Log in

Methane, Propene and Toluene Oxidation by Plasma-Pd/γ-Al2O3 Hybrid Reactor: Investigation of a Synergetic Effect

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The combination of a sub-microsecond pulsed dielectric barrier discharge with Pd/γ-Al2O3 catalyst was investigated for the oxidation of low concentration of methane, propene, and toluene in air at atmospheric pressure. The systematic comparison of the plasma-catalysis with the thermal-catalysis and the plasma-alone have been made for temperature window of 20–400 °C and energy deposition in the range 23–148 J L−1. To emphasis the reactivity of plasma produced species on the activation of the catalyst, two reactor configurations were used [in-plasma catalysis (IPC), and post-plasma catalysis (PPC)]. Fourier transform infrared spectrometer was used to follow the VOCs conversion and to quantify the mineralized products. The plasma-catalyst combination leads to higher VOCs conversion and decreases the catalyst activation temperature in both IPC and PPC configurations. For hybrid system, the light-off temperature is always lower than those observed for catalytic oxidation. In addition, the formation of the by-products such as formaldehyde, formic acid, and ozone was reduced significantly. A significant synergetic effect of hybrid plasma-catalytic system is not really observed in the presence of CH4 and C3H6. However, for C7H8 oxidation the synergetic effect was demonstrated at low temperature (<150 °C) for the IPC configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gélin P, Primet M (2002) App Catal B Environ 39:1–37

    Article  Google Scholar 

  2. Kim HH (2004) Plasma Process Polym 1:91–110

    Article  Google Scholar 

  3. Vandenbroucke AM, Morent R, De Geyter N, Leys C (2011) Hazard Mat 195:30–54

    Article  CAS  Google Scholar 

  4. Khacef A, Cormier JM, Pouvesle JM (2002) J Phys D Appl Phys 35:1491–1498

    Article  CAS  Google Scholar 

  5. Orlandini I, Riedel U (2004) Catal Today 89:83–88

    Article  CAS  Google Scholar 

  6. Van Durme J, Dewulf J, Leys C, Van Langenhove H (2008) Appl Catal B Environ 78:324–333

    Article  Google Scholar 

  7. Than Quoc AH, Pham Huu T, Le Van T, Cormier JM, Khacef A (2011) Catal Today 176:474–477

    Article  Google Scholar 

  8. Baylet A, Marécot P, Duprez D, Jeandel X, Lombaert K, Tatibouët JM (2012) Appl Catal B Environ 113–114:31–36

    Article  Google Scholar 

  9. Whitehead JC (2010) Pure Appl Chem 82:1329–1336

    Article  CAS  Google Scholar 

  10. Djéga-Mariadassou G, Baudin F, Khacef A, Da Costa P (2012) In: Parvulescu et al (Ed.) Plasma chemistry and catalysis in gases and liquids, Wiley-VCH Verlag GmbH, pp 89–125

  11. Guo YF, Ye DQ, Chen KF, He JC, Chen WL (2006) J Mol Catal A Chem 245:93–100

    Article  CAS  Google Scholar 

  12. Sivachandiran L, Thevenet F, Rousseau A (2014) Chem Eng J 246:184–195

    Article  CAS  Google Scholar 

  13. PhamHuu T, Gil S, DaCosta P, Giroir-Fendler A, Khacef A (2015) Catal Today 257:86–92

    Article  CAS  Google Scholar 

  14. Otto K, Haack LP, DeVries JE (1992) Appl Catal B Environ 1:1–12

    Article  CAS  Google Scholar 

  15. Demidyuk V, Whitehead JC (2007) Plasma Chem Plasma Process 27:85–94

    Article  CAS  Google Scholar 

  16. Da Costa P, Marques R, Da Costa S (2008) Appl Catal B Environ 84:214–222

    Article  Google Scholar 

  17. Hua W, Jin L, He X, Liu J, Hu H (2010) Catal Commun 11:968–972

    Article  CAS  Google Scholar 

  18. Foix M, Guyon C, Tatoulian M, Da Costa P (2010) Catal Commun 12:20–24

    Article  CAS  Google Scholar 

  19. Liu CJ, Yu K, Zhang Y, Zhu X, He F, Eliasson B (2004) Appl Catal B Environ 47:95–100

    Article  CAS  Google Scholar 

  20. Burch R, Crittle DJ, Hayes MJ (1999) Catal Today 47:229–237

    Article  CAS  Google Scholar 

  21. Sun Y, Zhou L, Zhang L, Sui H (2012) J Environ Sci 24:891–896

    Article  CAS  Google Scholar 

  22. Fan X, Zhu TL, Wang MY, Li XM (2009) Chemosphere 75:1301–1306

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge S. Gil and A. Giroir-Fendler, IRCELYON, for assistance in catalysts analysis and the fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Khacef.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham Huu, T., Sivachandiran, L., Da Costa, P. et al. Methane, Propene and Toluene Oxidation by Plasma-Pd/γ-Al2O3 Hybrid Reactor: Investigation of a Synergetic Effect. Top Catal 60, 326–332 (2017). https://doi.org/10.1007/s11244-016-0619-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0619-6

Keywords

Navigation