Skip to main content
Log in

High Intrinsic Catalytic Activity of CeVO4-Based Catalysts for Ammonia-SCR: Influence of pH During Hydrothermal Synthesis

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The catalytic activity of unsupported CeVO4 solid was investigated in ammonia-SCR at various NO/NOx ratio. CeVO4 structure was obtained from a straightforward hydrothermal synthesis route under mild conditions and then stabilized after ageing in wet atmosphere at 600 °C. The influence of pH measured after the hydrothermal treatment could be a crucial parameter to get optimal bulk and surface properties. The evolution of intrinsic catalytic activity was compared with regards to bulk and surface properties extracted from extensive characterization. The stabilization of V5+ in CeVO4 structure during NH3-SCR reactions was observed even after thermal aging at high temperature. This opens new perspectives for vanadium-based catalysts in mobile sources applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lietti L, Alemany JL, Forzatti P, Busca G, Ramis G, Giamello E, Bregani F (1996) Reactivity of V2O5–WO3/TiO2 catalysts in the selective catalytic reduction of nitric oxide by ammonia. Catal Today 29:143–148

    Article  CAS  Google Scholar 

  2. Lietti L, Ramis G, Berti F, Toledo G, Robba D, Busca G, Forzatti P (1998) Chemical, structural and mechanistic aspects on NOx SCR over commercial and model oxide catalysts. Catal Today 42:101–116

    Article  CAS  Google Scholar 

  3. Hwu Y, Yao YD, Cheng NF, Tung CY, Lin HM (1997) X-ray absorption of nanocrystal TiO2. Nanostruct Mater 9:355–358

    Article  CAS  Google Scholar 

  4. Madia G, Elsener M, Koebel M, Raimondi F, Wokaun A (2002) Thermal stability of vanadia-tungsta-titania catalysts in the SCR process. Appl Catal B 39:181–190

    Article  CAS  Google Scholar 

  5. Kojima H, Fischer M, Haga H, Ohya N, Nishi K, Mito T, Fukushi N (2015) Next generation all in one close-coupled urea-SCR system. SAE technical paper 2015-01-0994

  6. Guan B, Lin H, Zhu L, Tian B, Huang Z (2012) Effect of ignition temperature for combustion synthesis on the selective catalytic reduction of NOx with NH3 over Ti0.9Ce0.05V0.05O2−δ nanocomposites catalysts prepared by solution combustion route. Chem Eng J 181–182:307–322

    Article  Google Scholar 

  7. Peng Y, Wang C, Li J (2014) Structure–activity relationship of VOx/CeO2 nanorod for NO removal with ammonia. Appl Catal B 144:538–546

    Article  CAS  Google Scholar 

  8. Chen L, Li J, Ge M (2009) Promotional effect of Ce-doped V2O5–WO3/TiO2 with low vanadium loadings for selective catalytic reduction of NOx by NH3. J Phys Chem C 113:21177–21184

    Article  CAS  Google Scholar 

  9. Xie B, Lu G, Dai Q, Wang Y, Guo Y, Guo Y (2011) Synthesis of CeVO4 crystals with different sizes and shapes. J Clust Sci 22:555–561

    Article  CAS  Google Scholar 

  10. Ropp RC, Caroll B (1977) Precipitation of rare earth vanadates from aqueous solution. J Inorg Nucl Chem 39:1303–1307

    Article  CAS  Google Scholar 

  11. Sun LD, Zhang YX, Yan CH, Liao CS, Lu YQ (2002) Fabrication of size controllable YVO4 nanoparticles via microemulsion-mediated synthetic process. Solid State Commun 124:35–38

    Article  CAS  Google Scholar 

  12. Tronconi E, Nova I, Ciardelli C, Chatterjee D, Weibel M (2007) Redox features in the catalytic mechanism of the “standard” and “fast” NH3-SCR of NOx over a V-based catalyst investigated by dynamic methods. J Catal 245:1–10

    Article  CAS  Google Scholar 

  13. Nova I, Ciardelli C, Tronconi E, Chatterjee D, Bandl-Konrad B (2006) NH3–NO/NO2 chemistry over V-based catalysts and its role in the mechanism of the fast SCR reaction. Catal Today 114:3–12

    Article  CAS  Google Scholar 

  14. Yates M, Martin JA, Martin-Luengo MA, Suarez S, Blanco J (2005) N2O formation in the ammonia oxidation and in the SCR process with V2O5–WO3 catalysts. Catal Today 107–108:120–125

    Article  Google Scholar 

  15. Topsoe N-Y, Dumesic JA, Topsoe H (1995) Vanadia-titania catalysts for selective catalytic reduction of nitric-oxide by ammonia: I.I. Studies of active sites and formulation of catalytic cycles. J Catal 151:241–252

    Article  CAS  Google Scholar 

  16. Cousin R, Courcot D, Abi-Aad E, Capelle S, Amoureux JP, Dourdin M, Guelton M, Aboukais A (1999) 51 V MAS NMR characterization of V–Ce–O catalysts. Colloid Surf A 158:43–49

    Article  CAS  Google Scholar 

  17. Huang H, Gu Y, Zhao J, Wang X (2015) Catalytic combustion of chlorobenzene over VOx/CeO2 catalysts. J Catal 326:54–68

    Article  CAS  Google Scholar 

  18. Yu P, Hayes SA, O’Keefe TJ, O’Keefe MJ, Stoffer JO (2006) The Phase stability of cerium species in aqueous systems II. The CeIII/IV–H2O–H2O2/O2 systems. Equilibrium considerations and Pourbaix diagram calculations. J Electrochem Soc 153:C74–C79

    Article  CAS  Google Scholar 

  19. Tok AIY, Boey FYC, Dong Z, Sun XL (2007) Hydrothermal synthesis of CeO2 nano-particles. J Mater Process Technol 190:217–222

    Article  CAS  Google Scholar 

  20. Bellakki MB, Baidya T, Shivakumara C, Vasanthacharya NY, Hegde MS, Madras G (2008) Synthesis, characterization, redox and photocatalytic properties of Ce1−xPdxVO4 (0 ≤ x ≤ 0.1). Appl Catal B 84:474–481

    Article  CAS  Google Scholar 

  21. Opara-Krasovec U, Orel B, Surca A, Bukovec N, Reisfelfd R (1999) Structural and spectroelectrochemical investigations of tetragonal CeVO4 and Ce/V-oxide sol-gel derived ion-storage films. Solid State Ionics 118:195–214

    Article  CAS  Google Scholar 

  22. Martínez-Huerta MV, Coronado JM, Fernández-Garcia M, Inglesias-Juez A, Deo G, Fierro JLG, Baňares MA (2004) Nature of the vanadia–ceria interface in V5+/CeO2 catalysts and its relevance for the solid-state reaction toward CeVO4 and catalytic properties. J Catal 225:240–248

    Article  Google Scholar 

  23. Demeter M, Neumann M, Reichelt W (2000) Mixed-valence vanadium oxides studied by XPS. Surf Sci 454–456:41–44

    Article  Google Scholar 

  24. Kasperkiewicz J, Kovacich JA, Lichtman D (1983) XPS studies of vanadium and vanadium oxides. J Electr Spect Relat Phenom 32:123–132

    Article  CAS  Google Scholar 

  25. Mendialdua J, Casanova R, Barbaux Y (1995) XPS studies of V2O5, V6O13, VO2 and V2O3. J Electr Spect Relat Phenom 71:249–261

    Article  CAS  Google Scholar 

  26. Romeo M, Bak K, El Fallah J, Le Normand F, Hilaire L (1993) XPS Study of the reduction of cerium dioxide. Surf Int Anal 20:508–512

    Article  CAS  Google Scholar 

  27. Kang M, Park ED, Kim JM, Yie JE (2007) Manganese oxide catalysts for NOx reduction with NH3 at low temperatures. Appl Catal A 327:261–269

    Article  CAS  Google Scholar 

  28. Wu G, Li J, Fang Z, Lan L, Wang R, Lin T, Gong M, Chen Y (2015) Effectively enhance catalytic performance by adjusting pH during the synthesis of active components over FeVO4/TiO2–WO3–SiO2 monolith catalysts. Chem Eng J 271:1–13

    Article  CAS  Google Scholar 

  29. Klimczak M, Kern P, Heinzelmann T, Lucas M, Claus P (2010) High-throughput study of the effects of inorganic additives and poisons on NH3-SCR catalysts—part I: V2O5–WO3/TiO2 catalysts. Appl Catal B 95:39–47

    Article  CAS  Google Scholar 

  30. Dahlin S, Nilsson M, Bäckström D, Bergman S L, Bengtsson E, Bernasek S L, Pettersson L J (2016) Multivariate analysis of the effect of biodiesel-derived contaminants on V2O5–WO3/TiO2 SCR catalysts. Appl Catal B 183:377–385

    Article  Google Scholar 

  31. Liu F, He H, Lian Z, Shan W, Xie L, Asakura K, Yang W, Deng H (2013) Highly dispersed iron vanadate catalyst supported on TiO2 for the selective catalytic reduction of NOx with NH3. J Catal 307:340–351

    Article  CAS  Google Scholar 

  32. Kamata H, Takahashi K, Odenbrand CUI (1999) Kinetics of the Selective Reduction of NO with NH3 over a V2O5(WO3)/TiO2 Commercial SCR Catalyst. J Catal 185:106–113

    Article  CAS  Google Scholar 

  33. Zhang S, Zhong Q, Zhao W, Li Y (2014) Surface characterization studies on F-doped V2O5/TiO2 catalyst for NO reduction with NH3 at low-temperature. Chem Eng J 253:207–216

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support for this work from the French National Agency for Research (UREENOx Project, No. ANR-11-VPTT-002). The FEDER, the CNRS, the Région Nord Pas-de-Calais and the Ministère de l’Education Nationale de l’Enseignement Supérieur et de la Recherche are acknowledged for fundings of XPS/LEIS/ToF–SIMS spectrometers within the Pôle Régional d’Analyses de Surface and X-ray diffractometers. The authors want to thank Pr Rose-Noëlle Vannier for the opportunity to make first catalytic measurements with CeVO4 sample obtained through solid-state synthesis method.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christophe Dujardin or Pascal Granger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gillot, S., Dacquin, JP., Dujardin, C. et al. High Intrinsic Catalytic Activity of CeVO4-Based Catalysts for Ammonia-SCR: Influence of pH During Hydrothermal Synthesis. Top Catal 59, 987–995 (2016). https://doi.org/10.1007/s11244-016-0579-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0579-x

Keywords

Navigation