Skip to main content

Advertisement

Log in

Passive SCR: The Effect of H\(_2\) to NO Ratio on the Formation of NH\(_3\) Over Alumina Supported Platinum and Palladium Catalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

We investigate the relationship between the H\(_2\):NO ratio and NH\(_3\) formation over alumina supported Pt and Pd catalysts. By kinetic studies and in situ infrared spectroscopy, we report that NH\(_3\) formation is not only sensitive to the catalyst formulation but equally dependent on the feed gas composition and temperature. Specifically, we identify that hydrogen plays an important role in the dissociation of NO at low temperature. We also show that the support material itself plays a vital role in the ammonia formation mechanism due to the redox behaviour of NO adsorption at low temperature. This was unexpected as the noble metal is generally considered to be the active phase for the reaction of NO and H\(_2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. DiGulio CD, Pihl JA, Parks JE II, Amiridis MD, Toops TJ (2014) Catal Today 231:33–45

    Article  Google Scholar 

  2. Prikhodko VY, Parks JE, Pihl JA, Toops J (2014) SAE Int J Engines 7:1235–1243

    Article  Google Scholar 

  3. Oh SH, Triplett T (2014) Catal Today 231:22–32

    Article  CAS  Google Scholar 

  4. Macleod N, Cropley R, Keel JM, Lambert M (2004) J Catal 221:20–31

    Article  CAS  Google Scholar 

  5. Balle P, Geiger B, Klukowski D, Pignatelli M, Wohnrau S, Menzel M, Zirkwa I, Brunklaus G, Kureti S (2009) Appl Catal B 91:587–595

    Article  CAS  Google Scholar 

  6. Cho YS, Lee SW, Choi WC, Yoon YB (2014) Int J Automot Technol 15:723–731

    Article  Google Scholar 

  7. Can F, Courtois X, Royer S, Blanchard G, Rousseau S, Duprez D (2012) Catal. Today 197:144–154

    Article  CAS  Google Scholar 

  8. Xu J, Clayton R, Balakotaiah V, Harolk MP (2008) Appl. Catal. B 77:395–408

    Article  CAS  Google Scholar 

  9. Adams EC, Skoglundh M, Folic M, Bendixen EC, Garbrielsson P, Carlsson P-A (2015) Appl Catal B 165:10–19

    Article  CAS  Google Scholar 

  10. Kannisto H, Karatzas X, Edvardsson J, Pettersson LJ (2011) Appl Catal B 104:74–83

    Article  CAS  Google Scholar 

  11. Stenger HG Jr, Hepburn JS (1987) Energy Fuels 1(5):412–416

    Article  CAS  Google Scholar 

  12. Kobylinski TP, Taylor BW (1974) J Catal 33:376–384

    Article  CAS  Google Scholar 

  13. Almusaiteer K, Chuang SC (1998) J Catal 180:161–170

    Article  CAS  Google Scholar 

  14. Macleod N, Lambert RM (2003) Appl Catal B 46:483–495

    Article  CAS  Google Scholar 

  15. Iglesias-Juez A, Hungría AB, Martínez-Arias A, Fuerte A, Fernández-García M, Anderson JA, Conesa JC, Soria J (2003) J Catal 217:310–323

    Article  CAS  Google Scholar 

  16. Hixson BC, Jordan JW, Wagner EL (2011) J Phys Chem A 115:13364–13369

    Article  CAS  Google Scholar 

  17. Yang J-B, Fu O-Z, Yong D-Y, Wang S-D (2004) Appl Catal B 49:61–65

    Article  CAS  Google Scholar 

  18. Neyertz C, Volpe D, Perez D, Costilla I, Sanchez M (2009) Appl Catal A 368:146–157

    Article  CAS  Google Scholar 

  19. Hadjiivanov K, Saussey J, Freysz JL, Lavalley JC (1998) Catal Lett 1998:103–108

    Article  Google Scholar 

  20. Toops TJ, Smith DB, Epling WS, Parks JE, Partridge WP (2005) Appl Catal B 58:255–264

    Article  CAS  Google Scholar 

  21. Kijlstra WS, Brand DS, Poels EK (1997) J Catal 171:208–218

    Article  CAS  Google Scholar 

  22. Prinetto F, Ghiotti G, Nova I, Lietti L, Tronconi E, Forzatti P (2001) J Phys Chem B 2001:12732–12745

    Article  Google Scholar 

  23. Chien S-H, Kuo M-C, Lu C-H, Lu K-N (2004) Catal Today 97:121–127

    Article  CAS  Google Scholar 

  24. Miller DD, Chuang SSC (2009) J Taiwan Inst Chem E 40:613–621

    Article  CAS  Google Scholar 

  25. Farberow CA, Dumesic JA, Mavrikakis M (2014) ACS Catal 4:3307–3319

    Article  CAS  Google Scholar 

  26. Huai L-Y, He C-Z, Wang H, Wen H, Yi W-C, Liu J-Y (2015) J Catal 322:73–83

    Article  CAS  Google Scholar 

  27. de Wolf CA, Nieuwenhuys BE (2000) Surf Sci 469:196–203

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Swedish Energy Administration through the FFI program and the Competence Centre for Catalysis, which is financially supported by Chalmers University of Technology, the Swedish Energy Agency and the member companies: AB Volvo, ECAPS AB, Haldor Topsøe A/S, Volvo Car Corporation, Scania CV AB, and Wärtsilä Finland Oy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma Catherine Adams.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adams, E.C., Skoglundh, M., Gabrielsson, P. et al. Passive SCR: The Effect of H\(_2\) to NO Ratio on the Formation of NH\(_3\) Over Alumina Supported Platinum and Palladium Catalysts. Top Catal 59, 970–975 (2016). https://doi.org/10.1007/s11244-016-0576-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0576-0

Keywords

Navigation