Skip to main content
Log in

Performance of Zn/ZSM-5 for In Situ Catalytic Upgrading of Pyrolysis Bio-oil by Methane

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In situ catalytic upgrading of pyrolysis oil by natural gas at atmospheric pressure was achieved over a low cost Zn/ZSM-5 catalyst. Compared with other low cost metal species including Fe, Co, Cu, Ni, Mn, Zr and Ce, ZSM-5 supported Zn obtained the highest oil yield along with high oil H/C atomic ratio and low oil O/C atomic ratio. XRD result and TEM image of the 5 % Zn/ZSM-5 catalyst showed that small ZnO particles with different sizes of <10 nm were highly dispersed on/in ZSM-5 zeolite support. Further investigation indicated that during the reaction ZSM-5 framework mainly promotes the deoxygenation and improves the quality of bio-oil, while the highly dispersed Zn species mostly facilitate CH4 activation and allow it to be incorporated into the carbon chain of the bio-oil and enhances the quantity of bio-oil. The synergistic effects between ZSM-5 framework and Zn species made this process be able to not only upgrade the quality of bio-oil, but also produce more oil product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alonso DM, Wettstein SG, Dumesic JA (2012) Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem Soc Rev 41:8075–8098

    Article  CAS  Google Scholar 

  2. Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41:1538–1558

    Article  CAS  Google Scholar 

  3. Zhang L, Liu R, Yin R, Mei Y (2013) Upgrading of bio-oil from biomass fast pyrolysis in China: a review. Renew Sust Energ Rev 24:66–72

    Article  CAS  Google Scholar 

  4. Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenerg 38:68–94

    Article  CAS  Google Scholar 

  5. Liu C, Wang H, Karim AM, Sun J, Wang Y (2014) Catalytic fast pyrolysis of lignocellulosic biomass. Chem Soc Rev 43:7594–7623

    Article  CAS  Google Scholar 

  6. Pham TN, Shi D, Resasco DE (2014) Evaluating strategies for catalytic upgrading of pyrolysis oil in liquid phase. Appl Catal B 145:10–23

    Article  CAS  Google Scholar 

  7. Hossain AK, Davies PA (2013) Pyrolysis liquids and gases as alternative fuels in internal combustion engines-A review. Renew Sust Energ Rev 21:165–189

    Article  CAS  Google Scholar 

  8. Tan S, Zhang Z, Sun J, Wang Q (2013) Recent progress of catalytic pyrolysis of biomass by HZSM-5. Chin J Catal 34:641–650

    Article  CAS  Google Scholar 

  9. Bridgwater AV (1996) Production of high grade fuels and chemicals from catalytic pyrolysis of biomass. Catal Today 29:285–295

    Article  CAS  Google Scholar 

  10. Wright MM, Daugaard DE, Satrio JA, Brown RC (2010) Techno-economic analysis of biomass fast pyrolysis to transportation fuels. Fuel 89:S2–S10

    Article  CAS  Google Scholar 

  11. Graça I, Lopes JM, Cerqueira HS, Ribeiro MF (2013) Bio-oils upgrading for second generation biofuels. Ind Eng Chem Res 52:275–287

    Article  Google Scholar 

  12. Tang P, Zhu Q, Wu Z, Ma D (2011) Methane activation: the past and future. Energ Environ Sci 4:145–161

    Article  Google Scholar 

  13. Guo X, Fang G, Li G, Ma H, Fan H, Yu L, Ma C, Wu X, Deng D, Wei M, Tan D, Si R, Zhang S, Li J, Sun L, Tang Z, Pan X, Bao X (2014) Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 344:616–619

    Article  CAS  Google Scholar 

  14. Choudhary VR, Kinage AK, Choudhary TV (1997) Low-temperature nonoxidative activation of methane over H-Galloaluminosilicate (MFI) zeolite. Science 275:1286–1288

    Article  CAS  Google Scholar 

  15. Gabrienko AA, Arzumanov SS, Moroz IB, Toktarev AV, Wang W, Stepanov AG (2013) Methane activation and transformation on Ag/H-ZSM-5 zeolite studied with solid-state NMR. J Phys Chem C 117:7690–7702

    Article  CAS  Google Scholar 

  16. Anunziata OA, Mercado GVG, Pierella LB (2003) Catalytic activation of methane using n-pentane as co-reactant over Zn/H-ZSM-11 zeolite. Catal Lett 87:167–171

    Article  CAS  Google Scholar 

  17. Anunziata OA, Mercado GG, Pierella LB (2004) Improvement of methane activation using n-hexane as co-reactant over Zn/HZSM-11 zeolite. Catal Commun 5:401–405

    Article  CAS  Google Scholar 

  18. Choudhary VR, Mondal KC, Mulla SAR (2005) Understanding methane aromatization on a Zn-modified high-silica zeolite. Angew Chem Int Ed 44:4381–4385

    Article  CAS  Google Scholar 

  19. Luzgin MV, Rogov VA, Arzumanov SS, Toktarev AV, Stepanov AG, Parmon VN (2009) Methane aromatization on Zn-modified zeolite in the presence of a co-reactant higher alkane: how does it occur? Catal Today 144:265–272

    Article  CAS  Google Scholar 

  20. Luzgin MV, Rogov VA, Arzumanov SS, Toktarev AV, Stepanov AG, Parmon VN (2008) Simultaneous conversion of methane and methanol into gasoline over bifunctional Ga-, Zn-, In-, and/or Mo-modified ZSM-5 zeolites. Angew Chem Int Edit 47:4559–4562

    Article  CAS  Google Scholar 

  21. He P, Song H (2014) Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust. Ind Eng Chem Res 53:15862–15870

    Article  CAS  Google Scholar 

  22. Carlson TR, Cheng YT, Jae JH, Huber GW (2011) Room temperature activation of methane over Zn modified H-ZSM-5 zeolites: insight from solid-state NMR and theoretical calculations. Energy Environ Sci 4:145–161

    Article  CAS  Google Scholar 

  23. Murata K, Liu Y, Inaba M, Takahara I (2012) Catalytic fast pyrolysis of jatropha wastes. J Anal Appl Pyrolysis 94:75–82

    Article  CAS  Google Scholar 

  24. Iliopoulou EF, Antonakou EV, Karakoulia SA, Vasalos IA, Lappas A (2007) A, Triantafyllidis K. S. Catalytic conversion of biomass pyrolysis products by mesoporous materials: effect of steam stability and acidity of Al-MCM-41 catalysts. Chem Eng J 134:51–57

    Article  CAS  Google Scholar 

  25. Jun H, Wei L, Agrawal PK, Jones CW (2009) Effects of acidity on the conversion of the model bio-oil ketone cyclopentanone on H-Y zeolites. J Phys Chem C 113:16702–16710

    Article  Google Scholar 

  26. Dao LH, Haniff M, Houle A, Lamothe D (1987) Reactions of biomass pyrolysis oil over ZSM-5 zeolite catalysts. Div Fuel Chem 32:308–316

    CAS  Google Scholar 

  27. Haniff MI, Dao LH (1988) Deoxygenation of carbohydrates and their isopropylidene derivatives over ZSM-5 zeolite catalysts. Appl Catal 39:33–47

    Article  CAS  Google Scholar 

  28. Fanchiang W, Lin Y (2012) Catalytic fast pyrolysis of furfural over H-ZSM-5 and Zn/H-ZSM-5 catalysts. Appl Catal A Gen 419–420:102–110

    Article  Google Scholar 

  29. Corma A, Huber GW, Sauvanaud L (2007) O’ Connor, P. Processing biomass-derived oxygenates in the oil refinery: catalytic cracking (FCC) reaction pathways and role of catalyst. J Catal 247:307–327

    Article  CAS  Google Scholar 

  30. Campanella A, Harold MP (2012) Fast pyrolysis of microalgae in a falling solids reactor: effects of process variables and zeolite catalysts. Biomass Bioenerg 46:218–232

    Article  CAS  Google Scholar 

  31. Iliopoulou EF, Stefanidis SD, Kalogiannis KG, Lappas AA, Triantafyllidis KS (2012) Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite original research article. Appl Catal B 127:281–290

    Article  CAS  Google Scholar 

  32. Thangalazhy-Gopakumar S, Adhikari S, Gupta RB (2012) Catalytic pyrolysis of biomass over H+ZSM-5 under hydrogen pressure. Energ Fuels 26:5300–5306

    Article  CAS  Google Scholar 

  33. Biscardi JA, Meitzner GD, Iglesia E (1998) Structure and density of active Zn species in Zn/H-ZSM5 propane aromatization catalysts. J Catal 179:192–202

    Article  CAS  Google Scholar 

  34. Biscardi JA, Iglesia E (1999) Reaction pathways and rate-determining steps in reactions of alkanes on H-ZSM5 and Zn/H-ZSM5 catalysts. J Catal 182:117–128

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial supports from the Alberta Innovates - Energy and Environment Solutions (AI-EES, 2015) and Natural Sciences and Engineering Research Council of Canada (NSERC, RGPIN/04385-2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, P., Shan, W., Xiao, Y. et al. Performance of Zn/ZSM-5 for In Situ Catalytic Upgrading of Pyrolysis Bio-oil by Methane. Top Catal 59, 86–93 (2016). https://doi.org/10.1007/s11244-015-0508-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0508-4

Keywords

Navigation