Skip to main content
Log in

Synthesis of Nanostructured Molybdenum Carbide as Catalyst for the Hydrogenation of Levulinic Acid to γ-Valerolactone

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The effect of the morphology and size of unsupported molybdenum carbide (β-Mo2C) was investigated in the selective hydrogenation of levulinic acid to γ-valerolactone (GVL) in aqueous phase. Nanostructured β-Mo2C was synthetized by two different approaches: (i) using multiwalled carbon nanotubes (CNT) as both hard template and source of carbon and; (ii) using 1D nanostructured α-MoO3 as precursor. Depending on the type of synthesis used, the morphology of the resulting β-Mo2C was different. Well-oriented β-Mo2C nanoparticles with a fibril morphology were formed when CNTs were used as hard template and source of carbon at 700 °C for 6 h under inert environment, while well-defined β-Mo2C 1D nanostructures were formed after carburization of the nano-sized α-MoO3 precursor at 650 °C/2 h under 20 % (v/v) CH4/H2 atmosphere. The catalytic performance of the materials was investigated at 30 bar H2 and 180 °C in a batch reactor and compared with a Mo2C synthesized by temperature-programmed carburization of commercial MoO3. The β-Mo2C 1D nanostructures presented a relatively higher activity than the others probably as a result of more exposed active sites, confirmed by the higher CO chemisorption uptake. All of the catalysts were highly selective to GVL (>85 %). Deep hydrogenation products such as 1,4 pentanediol and methyltetrahydrofuran were observed in minor amounts, underlining the hydrogenation potential of molybdenum carbide based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Scheme 2

Similar content being viewed by others

References

  1. Bozell JJ (2010) Green Chem 12:525

    Article  Google Scholar 

  2. Fitzpatrick SW (1990) US Patent 4.897.497

  3. Fitzpatrick SW (1997) US Patent 5.608.105

  4. Alonso DM, Wettsteinb SG, Dumesic JA (2013) Green Chem 15:584

    Article  CAS  Google Scholar 

  5. Wright WRH, Palkovits R (2012) ChemSusChem 5:1657

    Article  CAS  Google Scholar 

  6. Corma A, Ibarra S, Velty A (2007) Chem Rev 107:2411

    Article  CAS  Google Scholar 

  7. Besson M, Gallezot P, Pinel C (2014) Chem Rev 114:1827

    Article  CAS  Google Scholar 

  8. Upare PP, Lee JM, Hwang DW, Halligudi SB, Hwang YK, Chang JS (2011) J Ind Eng Chem 17:287

    Article  CAS  Google Scholar 

  9. Al-Shaal MG, Wright WRH, Palkovits R (2012) Green Chem 14:1260

    Article  CAS  Google Scholar 

  10. Oyama ST (1996) The chemistry of transition metal carbides and nitrides. Blackie Academic & Professional, London

    Book  Google Scholar 

  11. Ji N, Zhang T, Zheng MY, Wang AQ, Wang H, Wang XD, Chen JG (2008) Angew Chem Int Ed 47:8510

    Article  CAS  Google Scholar 

  12. Sajkowski DJ, Oyama ST (1996) Appl Catal A 134:339

    Article  CAS  Google Scholar 

  13. Devan RS, Patil RA, Lin JH, Ma YR (2012) Adv Funct Mater 22:3326

    Article  CAS  Google Scholar 

  14. Chen WF, Wong CH, Sasaki K (2013) Energy Environ Sci 6:943

    Article  CAS  Google Scholar 

  15. Liao L, Wang S, Xiao J, Bian X, Zhang Y, Scanlon MD, Hu X, Tang Y, Liu B, Girault HH (2014) Energy Environ Sci 7:387

    Article  CAS  Google Scholar 

  16. Mai EF, Machado MA, Davies TE, Lopez-Sanchez JA, Teixeira da Silva V (2014) Green Chem 16(9):4092–4097

    Article  CAS  Google Scholar 

  17. Gao Q, Zhang C, Xie S, Hua W, Zhang Y, Ren N, Xu H, Tang Y (2009) Chem Mater 21:5560

    Article  CAS  Google Scholar 

  18. Ajayan PM, Stephan O, Redlich Ph, Colliex C (1995) Nature 375:564

    Article  CAS  Google Scholar 

  19. Li Z, Chen C, Zhan E, Ta N, Lia Y, Shen W (2014) Chem Commun 50:4469

    Article  CAS  Google Scholar 

  20. Patzke GR, Michailovski A, Krumeich F, Nesper R, Grunwaldt JD, Baiker A (2004) Chem Mater 16:1126

    Article  CAS  Google Scholar 

  21. Teixeira da Silva V, Schmal M, Oyama ST (1996) J Solid State Chem 123(1):168–182

    Article  CAS  Google Scholar 

  22. Ma J, Moy D (2007) US Patent 0179050A1

  23. Lou XW, Zeng HC (2002) Chem Mater 14:4781

    Article  CAS  Google Scholar 

  24. Lee JS, Lee KH, Lee JY (1992) J Phys Chem 96:362

    Article  CAS  Google Scholar 

  25. Nagai M, Tominaga H, Omi S (2000) Langmuir 16:10215

    Article  CAS  Google Scholar 

  26. Luo WH, Deka U, Beale AM, van Eck ERH, Bruijnincx PCA, Weckhuysen BM (2013) J Catal 301:175

    Article  CAS  Google Scholar 

  27. Shimizu K, Kannoa S, Kona K (2014) Green Chem 16:3899

    Article  CAS  Google Scholar 

  28. Serrano-Ruiz JC, Wang D, Dumesic JA (2010) Green Chem 12:574

    Article  CAS  Google Scholar 

  29. Yan Z, Lin L, Liu S (2009) Energy Fuels 23:3853

    Article  CAS  Google Scholar 

  30. Schwartz V, Teixeira da Silva V, Oyama ST (2000) J Mol Catal A 163:251

    Article  CAS  Google Scholar 

  31. Geilen FMA, Engendahl B, Harwardt A, Marquardt W, Klankermayer J, Leitner W (2010) Angew Chem Int Ed 49:5510

    Article  CAS  Google Scholar 

  32. Li M, Li G, Li N, Wang A, Dong W, Wang X, Conga Y (2014) Chem Commun 50:1414

    Article  CAS  Google Scholar 

  33. Al-Shaal MG, Dzierbinski A, Palkovits R (2014) Green Chem 16:1358

    Article  CAS  Google Scholar 

  34. Rodella CB, Barrett DH, Moya SF, Figueroa SJ, Pimenta MT, Curvelo AAS, Teixeira da Silva V (2015) RSC Adv 5(30):23874–23885

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Brazilian Post-doctoral program CAPES/PNPD for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Teixeira da Silva.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 176 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quiroz, J., Mai, E.F. & Teixeira da Silva, V. Synthesis of Nanostructured Molybdenum Carbide as Catalyst for the Hydrogenation of Levulinic Acid to γ-Valerolactone. Top Catal 59, 148–158 (2016). https://doi.org/10.1007/s11244-015-0433-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0433-6

Keywords

Navigation