Skip to main content
Log in

Methane Oxidation Over Pd Supported on Ceria–Alumina Under Rich/Lean Cycling Conditions

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Catalysts with highly dispersed palladium on alumina, alumina doped with 20 wt% ceria and ceria have been prepared, characterized and examined for net-lean methane oxidation. In particular, the activity and selectivity were investigated during rich/lean cycling of the feed. The ceria content is found to influence both the general and the instantaneous activity responses. The results indicate that the active phase of palladium changes between reduced and oxidised Pd during the rich/lean cycling, and that the process is influenced by the presence of ceria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ciuparu D, Lyubovsky MR, Altman E, Pfefferle LD, Datye A (2002) Catalytic combustion of methane over palladium-based catalysts. Catal Rev 44(4):593–649. doi:10.1081/cr-120015482

    Article  CAS  Google Scholar 

  2. Carstens JN, Su SC, Bell AT (1998) Factors affecting the catalytic activity of Pd/ZrO2 for the combustion of methane. J Catal 176(1):136–142

    Article  CAS  Google Scholar 

  3. Carlsson P-A, Fridell E, Skoglundh M (2007) Metahne oxidation over Pt/Al2O3 and Pd/Al2O3 catalysts under transient conditions. Catal Lett 115(1):1–7. doi:10.1007/s10562-007-9057-1

    Article  CAS  Google Scholar 

  4. Trovarelli A, de Leitenburg C, Boaro M, Dolcetti G (1999) The utilization of ceria in industrial catalysis. Catal Today 50(2):353–367

    Article  CAS  Google Scholar 

  5. Haneda M, Mizushima T, Kakuta N (1998) Synergistic effect between Pd and nonstoichiometric cerium oxide for oxygen activation in methane oxidation. J Phys Chem B 102(34):6579–6587. doi:10.1021/jp9819285

    Article  CAS  Google Scholar 

  6. Becker E, Carlsson P-A, Skoglundh M (2009) Methane oxidation over alumina and ceria supported platinum. Top Catal 52(13):1957–1961. doi:10.1007/s11244-009-9379-x

    Article  CAS  Google Scholar 

  7. Dawody J, Eurenius L, Abdulhamid H, Skoglundh M, Olsson E, Fridell E (2005) Platinum dispersion measurements for Pt/BaO/Al2O3, NOx storage catalysts. Appl Catal A 296(2):157–168

    Article  CAS  Google Scholar 

  8. Lundgren S, Keck KE, Kasemo B (1994) A flow reactor system for catalytic reaction studies, allowing time- and space-resolved measurements of gas composition and temperature around the catalyst. Rev Sci Instrum 65(8):2696–2703

    Article  CAS  Google Scholar 

  9. Wang-Hansen C, Kamp CJ, Skoglundh M, Andersson B, Carlsson P-A (2011) Experimental method for kinetic studies of gas–solid reactions: oxidation of carbonaceous matter. J Phys Chem C 115(32):16098–16108. doi:10.1021/jp204539g

    Article  CAS  Google Scholar 

  10. Faria WLS, Perez CAC, Cesar DV, LdC Dieguez, Schmal M (2009) In situ characterizations of Pd/Al2O3 and Pd/CeO2/Al2O3 catalysts for oxidative steam reforming of propane. Appl Catal B 92(1–2):217–224

    CAS  Google Scholar 

  11. Ramírez-López R, Elizalde-Martinez I, Balderas-Tapia L (2010) Complete catalytic oxidation of methane over Pd/CeO2-Al2O3: the influence of different ceria loading. Catal Today 150(3–4):358–362

    Article  Google Scholar 

  12. Santos ACSF, Damyanova S, Teixeira GNR, Mattos LV, Noronha FB, Passos FB, Bueno JMC (2005) The effect of ceria content on the performance of Pt/CeO2/Al2O3 catalysts in the partial oxidation of methane. Appl Catal A 290(1–2):123–132

    CAS  Google Scholar 

  13. Anderson JRPK, Pratt KC (1985) Introduction to characterization and testing of catalysts. Academic Press, Orlando

    Google Scholar 

  14. Kašpar J, Fornasiero P, Graziani M (1999) Use of CeO2-based oxides in the three-way catalysis. Catal Today 50(2):285–298

    Article  Google Scholar 

  15. Barbier J Jr, Duprez D (1994) Steam effects in three-way catalysis. Appl Catal B 4(2–3):105–140

    CAS  Google Scholar 

  16. Matam SK, Aguirre MH, Weidenkaff A, Ferri D (2010) Revisiting the problem of active sites for methane combustion on Pd/Al2O3 by operando XANES in a lab-scale fixed-bed reactor. J Phys Chem C 114(20):9439–9443. doi:10.1021/jp1019697

    Article  CAS  Google Scholar 

  17. Santhosh Kumar M, Eyssler A, Hug P, van Vegten N, Baiker A, Weidenkaff A, Ferri D (2010) Elucidation of structure, activity relationships of model three way catalysts for the combustion of methane. Appl Catal B 94(1–2):77–84

    CAS  Google Scholar 

  18. Hicks RF, Qi H, Young ML, Lee RG (1990) Structure sensitivity of methane oxidation over platinum and palladium. J Catal 122(2):280–294

    Article  CAS  Google Scholar 

  19. K-i Fujimoto, Ribeiro FH, Avalos-Borja M, Iglesia E (1998) Structure and reactivity of PdOx/ZrO2 catalysts for methane oxidation at low temperatures. J Catal 179(2):431–442

    Article  Google Scholar 

  20. Su SC, Carstens JN, Bell AT (1998) A study of the dynamics of Pd oxidation and PdO reduction by H2 and CH4. J Catal 176(1):125–135

    Article  CAS  Google Scholar 

  21. Burch R, Urbano FJ (1995) Investigation of the active state of supported palladium catalysts in the combustion of methane. Appl Catal A 124(1):121–138

    Article  CAS  Google Scholar 

  22. Choudhary TV, Banerjee S, Choudhary VR (2005) Influence of PdO content and pathway of its formation on methane combustion activity. Catal Commun 6(2):97–100

    Article  CAS  Google Scholar 

  23. Hellman A, Resta A, Martin NM, Gustafson J, Trinchero A, Carlsson PA, Balmes O, Felici R, van Rijn R, Frenken JWM, Andersen JN, Lundgren E, Grönbeck H (2012) The active phase of palladium during methane oxidation. J Phys Chem Lett 3(6):678–682. doi:10.1021/jz300069s

    Article  CAS  Google Scholar 

  24. Kinnunen NM, Hirvi JT, Suvanto M, Pakkanen TA (2011) Role of the interface between Pd and PdO in methane dissociation. J Phys Chem C 115(39):19197–19202. doi:10.1021/jp204360c

    Article  CAS  Google Scholar 

  25. Kinnunen NM, Hirvi JT, Venalainen T, Suvanto M, Pakkanen TA (2011) Procedure to tailor activity of methane combustion catalyst: relation between Pd/PdOx active sites and methane oxidation activity. Appl Catal A Gen 397(1–2):54–61

    Article  CAS  Google Scholar 

  26. Thevenin PO, Pocoroba E, Pettersson LJ, Karhu H, Väyrynen IJ, Järås SG (2002) Characterization and activity of supported palladium combustion catalysts. J Catal 207(1):139–149

    Article  CAS  Google Scholar 

  27. Yazawa Y, Yoshida H, Takagi N, S-i Komai, Satsuma A, Hattori T (1998) Oxidation state of palladium as a factor controlling catalytic activity of Pd/SiO2–Al2O3 in propane combustion. Appl Catal B 19(3–4):261–266

    CAS  Google Scholar 

  28. Schwartz WR, Pfefferle LD (2012) Combustion of methane over palladium-based catalysts: support interactions. J Phys Chem C 116(15):8571–8578. doi:10.1021/jp2119668

    Article  CAS  Google Scholar 

  29. Ciuparu D, Bozon-Verduraz F, Pfefferle L (2002) Oxygen exchange between palladium and oxide supports in combustion catalysts. J Phys Chem B 106(13):3434–3442. doi:10.1021/jp013577r

    Article  CAS  Google Scholar 

  30. Burch R, Urbano FJ, Loader PK (1995) Methane combustion over palladium catalysts: the effect of carbon dioxide and water on activity. Appl Catal A 123(1):173–184

    Article  CAS  Google Scholar 

  31. Card RJ, Schmitt JL, Simpson JM (1983) Palladium-carbon hydrogenolysis catalysts: the effect of preparation variables on catalytic activity. J Catal 79(1):13–20

    Article  CAS  Google Scholar 

  32. Cullis CF, Nevell TG, Trimm DL (1972) Role of the catalyst support in the oxidation of methane over palladium. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases 68:1406–1412

    CAS  Google Scholar 

  33. Ciuparu D, Pfefferle L (2001) Support and water effects on palladium based methane combustion catalysts. Appl Catal A 209(1–2):415–428

    CAS  Google Scholar 

  34. Carlsson P-A, Skoglundh M (2011) Low-temperature oxidation of carbon monoxide and methane over alumina and ceria supported platinum catalysts. Appl Catal B 101(3–4):669–675

    CAS  Google Scholar 

Download references

Acknowledgments

This study has been performed at the Competence Centre for Catalysis, which is hosted by Chalmers University of Technology and financially supported by the Swedish Energy Agency and the member companies AB Volvo, Volvo Car Corporation, Scania CV AB, Haldor Topsøe A/S, and ECAPS AB. The authors acknowledge support by the DAAD (Deutscher Akademischer Austauschdienst) and by the COST Action CM1104. J.L. and St.S. acknowledge additional financial support by the Deutsche Forschungsgemeinschaft, including the Excellence Cluster “Engineering of Advanced Materials” in the framework of the excellence initiative. St.S. gratefully acknowledges a PhD grant of the “Fonds der Chemischen Industrie”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheedeh Fouladvand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fouladvand, S., Schernich, S., Libuda, J. et al. Methane Oxidation Over Pd Supported on Ceria–Alumina Under Rich/Lean Cycling Conditions. Top Catal 56, 410–415 (2013). https://doi.org/10.1007/s11244-013-9988-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-9988-2

Keywords

Navigation